A quadrilateral with only one pair of parallel sides.
<span>a small carpal bone in the base of the hand, articulating with the metacarpal of the index finger.
</span>
Answer:
The tension is 
Explanation:
The free body diagram of the question is shown on the first uploaded image From the question we are told that
The distance between the two poles is 
The mass tied between the two cloth line is 
The distance it sags is 
The objective of this solution is to obtain the magnitude of the tension on the ends of the clothesline
Now the sum of the forces on the y-axis is zero assuming that the whole system is at equilibrium
And this can be mathematically represented as

To obtain
we apply SOHCAHTOH Rule
So 
![\theta = tan^{-1} [\frac{opp}{adj} ]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20tan%5E%7B-1%7D%20%5B%5Cfrac%7Bopp%7D%7Badj%7D%20%5D)
![= tan^{-1} [\frac{1}{7}]](https://tex.z-dn.net/?f=%3D%20tan%5E%7B-1%7D%20%5B%5Cfrac%7B1%7D%7B7%7D%5D)






Answer:
The workdone is 
Explanation:
From the question we are told that
The height of the cylinder is 
The face Area is 
The density of the cylinder is 
Where
is the density of freshwater which has a constant value

Now
Let the final height of the device under the water be 
Let the initial volume underwater be 
Let the initial height under water be 
Let the final volume under water be 
According to the rule of floatation
The weight of the cylinder = Upward thrust
This is mathematically represented as


So 
=> 
Now the work done is mathematically represented as

![= \rho_w g A [\frac{h^2}{2} ] \left | h_f} \atop {h}} \right.](https://tex.z-dn.net/?f=%3D%20%20%20%5Crho_w%20g%20A%20%5B%5Cfrac%7Bh%5E2%7D%7B2%7D%20%5D%20%5Cleft%20%7C%20h_f%7D%20%5Catop%20%7Bh%7D%7D%20%5Cright.)
![= \frac{g A \rho}{2} [h^2 - h_f^2]](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7Bg%20A%20%5Crho%7D%7B2%7D%20%20%5Bh%5E2%20-%20h_f%5E2%5D)
![= \frac{g A \rho}{2} (h^2) [1 - \frac{h_f^2}{h^2} ]](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7Bg%20A%20%5Crho%7D%7B2%7D%20%28h%5E2%29%20%20%5B1%20%20-%20%5Cfrac%7Bh_f%5E2%7D%7Bh%5E2%7D%20%5D)
Substituting values

The amount of work the two tugboats completed on the supertanker W = 3.12 × 10^9 joules .
Work is a physics term used to describe the energy transfer that takes place when an object is moved over a distance by an external force, at least some . The component of the force acting along the path multiplied by the length of the path can be used to calculate work if the force is constant. Mathematically, this idea is expressed as W = fd, where W is the work and f is the force multiplied by d, the distance. Work is completed when the force is applied at an angle of with respect to the displacement. Performing work on a body involves moving it in its entirety from one location to another as well as other methods. However, the work is thought to be negative if the applied force is in opposition to the item's motion, indicating that energy is being pulled away from the object
Learn more about work here:
brainly.com/question/1374468
#SPJ4