Answer:
moles CO2 = 0.065 moles
Explanation:
- mole = 6.022 E23 molecules.....Avogadro
∴ molecules CO2 = 3.9 E22 molecules
⇒ moles CO2 = (3.9 E22 molecules CO2)×( moles CO2/ 6.022 E23 molecules CO2)
⇒ moles CO2 = 0.065 moles
Answer:
D
Explanation:
because it is being moved around
Answer: 1.52 atm
Explanation:
Given that:
Volume of gas V = 10.0L
Temperature T = 35.0°C
Convert Celsius to Kelvin
(35.0°C + 273 = 308K)
Pressure P = ?
Number of moles = 0.6 moles
Molar gas constant R is a constant with a value of 0.0821 atm L K-1 mol-1
Then, apply ideal gas equation
pV = nRT
p x 10.0L = 0.6 moles x (0.0821 atm L K-1 mol-1 x 308K)
p x 10.0L = 15.17 atm L
p = 15.17 atm L / 10.0L
p = 1.517 atm (round to the nearest hundredth as 1.52 atm)
Thus, the pressure of the gas is 1.52 atm
Answer:
1750L
Explanation:
Given
Initial Temperature = 25°C
Initial Pressure = 175 atm
Initial Volume = 10.0L
Final Temperature = 25°C
Final Pressure = 1 atm
Final Volume = ?
This question is an illustration of ideal gas law.
From the given parameters, the initial temperature and final temperature are the same; this implies that the system has a constant temperature.
As such, we'll make use of Boyle's Law to solve this;
Boyle's Law States that:
P₁V₁ = P₂V₂
Where P₁ and P₂ represent Initial and Final Pressure, respectively
While V₁ and V₂ represent Initial and final volume
The equation becomes
175 atm * 10L = 1 atm * V₂
1750 atm L = 1 atm * V₂
1750 L = V₂
Hence, the final volume that can be stored is 1750L
Cathode Ray experiment to figure out electrons exist -> atoms can be broken up into subatomic particles