1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
motikmotik
4 years ago
7

A double-pipe heat exchanger is used to cool a hot fluid (cp = 3800 J/kg·K) entering the heat exchanger at 200°C with a flow rat

e of 0.4 kg/s. In the cold side, cooling fluid (cp = 4200 J/kg·K) enters the heat exchanger at 10°C with a mass flow rate of 0.5 kg/s. The double-pipe heat exchanger has a thin-walled inner tube, with convection heat transfer coefficients inside and outside of the inner tube estimated to be 1400 W/m2 ·K and 1100 W/m2 ·K, respectively. The heat exchanger has a heat transfer surface area of 2.5 m2 , and the estimated fouling factor caused by the accumulation of deposit on the surfaces is 0.0002 m2 ·K/W. (a) Determine the effectiveness values for the parallel- and counter-flow configurations. (b) Determine outlet temperatures of the hot fluid for the parallel- and counter-flow configurations. (c) Determine outlet temperatures of the cold fluid for the parallel- and counter-flow configurations.

Engineering
1 answer:
MAXImum [283]4 years ago
3 0

Answer:

See explaination

Explanation:

please kindly see attachment for the step by step solution of the given problem

You might be interested in
The part of a circuit that carries the flow of electrons is referred to as the?
Oksanka [162]

Answer:

  Conductor

Explanation:

Current is carried by a conductor.

__

The purpose of a dielectric and/or insulator is to prevent current flow. An electrostatic field may set up the conditions for current flow, but it carries no current itself.

7 0
3 years ago
A reservoir delivers water to a horizontal pipeline 39 long The first 15 m has a diameter of 50 mm, after which it suddenly beco
allsm [11]

Answer:

The difference of head in the level of reservoir is 0.23 m.

Explanation:

For pipe 1

d_1=50 mm,f_1=0.0048

For pipe 2

d_2=75 mm,f_2=0.0058

Q=2.8 l/s

Q=2.8\times 10^{-3]

We know that Q=AV

Q=A_1V_1=A_2V_2

A_1=1.95\times 10^{-3}m^2

A_2=4.38\times 10^{-3} m^2

So V_2=0.63 m/s,V_1=1.43 m/s

head loss (h)

h=\dfrac{f_1L_1V_1^2}{2gd_1}+\dfrac{f_2L_2V_2^2}{2gd_2}+0.5\dfrac{V_1^2}{2g}

Now putting the all values

h=\dfrac{0.0048\times 15\times 1.43^2}{2\times 9.81\times 0.05}+\dfrac{0.0058\times 24\times 0.63^2}{2\times 9.81\times 0.075}+0.5\dfrac{1.43^2}{2\times 9.81}

So h=0.23 m

So the difference of head in the level of reservoir is 0.23 m.

8 0
3 years ago
Design a plate and frame heat exchanger for the following problem:
qwelly [4]

Answer:

See explaination and attachment.

Explanation:

Iteration method is a repetitive method applied until the desired result is achieved.

Let the given equation be f(x) = 0 and the value of x to be determined. By using the Iteration method you can find the roots of the equation. To find the root of the equation first we have to write equation like below

x = pi(x)

Let x=x0 be an initial approximation of the required root α then the first approximation x1 is given by x1 = pi(x0).

Similarly for second, thrid and so on. approximation

x2 = pi(x1)

x3 = pi(x2)

x4 = pi(x3)

xn = pi(xn-1).

please go to attachment for the step by step solution.

8 0
3 years ago
Assume the work done compressing the He gas is -63 kJ and the internal energy change of the gas is 79 kJ. What is the heat loss
klemol [59]

Answer:

Heat gain of 142 kJ

Explanation:

We can see that job done by compressing the He gas is negative, it means that the sign convention we are going to use is negative for all the work done by the gas and positive for all the job done to the gas. With that being said, the first law of thermodynamics equation will help us to solve this problem.

ΔU = Q + W ⇒ Q = ΔU -W

Q = 79 - (-63) = 142 kJ

Therefore, the gas gained heat by an amount of 142 kJ.

3 0
3 years ago
Air at T1 = 32°C, p1 = 1 bar, 50% relative humidity enters an insulated chamber operating at steady state with a mass flow rate
RUDIKE [14]

Answer:

4.5kg/min

Explanation:

Given parameters

T_1 = 32^0 C,  m_1 = 3 kg/min, T_2 = 7^0 C ,T_3 = 17^0

if we take  

The mass flow rate of the second stream = m_2(kg/min)

The mass flow rate of mixed exit stream = m_3 (kg/min)

Now from mass conservation

m_3 = m_2 + m_1

m_3 = m_2 + 3 (kg/min)

The temperature of the mixed exit stream given as

T_3m_3 = T_2m_2 +T_1m_1\\\\17 ( 3 + m_2) = 7 \times m_2 + 32 \times 3\\\\51 + 17 m_2 = 7 m_2 + 96\\\\10 m_2 = 96 - 51\\\\m_2 = 4.5 kg/min\\\\\\\\

Therefore the mass flow rate of second stream will be 4.5 kg/min.

7 0
3 years ago
Other questions:
  • A converging-diverging nozzle is designed to operate with an exit Mach number of 1.75 . The nozzle is supplied from an air reser
    15·1 answer
  • While discussing what affects the amount of pressure exerted by the brakes: Technician A says that the shorter the line, the mor
    14·1 answer
  • The reverse water-gas shift (RWGS) reaction is an equimolar reaction between CO2 and H2 to form CO and H2O. Assume CO2 associati
    10·1 answer
  • Refrigerant 134a enters a horizontal pipe operating at steady state at 40oC, 300 kPaand a velocity of 40 m/s. At the exit, the t
    13·1 answer
  • Air expands through a turbine operating at steady state. At the inlet p1 = 150 lbf/in^2, T1 = 1400R and at the exit p2 = 14.8 lb
    10·1 answer
  • For the Mohr's circle of a plane-strain element, which of the following changes as a result of shear strain change?
    7·1 answer
  • O local utilizado pelos grandes avioes para descolar e aterrar
    14·1 answer
  • Conclusion. What process is responsible for the bubbling action of the organism? What is your evidence?
    13·1 answer
  • What is photosynthesis​
    9·2 answers
  • If a front gear had 24 teeth, and a rear gear has 12 teeth:
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!