<span>A physical change basically involves a change in physical properties. Some examples of physical properties include: texture, shape, size, color, volume, mass, weight, etc.
The water melting has changed the shape and therefore it's physical properties, but the chemical nature of the water has not been altered.
So that's why it's a physical change, and not a chemical change.</span>
Answer:
None of the options are correct
Explanation:
Ketone is an organic compound with general formula RCOR' ie RC=OR where R and R' are alkyl groups. Example of ketone can be written as:
C—C—C=O—C
1. Answer;
- Exothermic reaction
Explanation;
-Exothermic reactions are types of chemical reactions in which heat energy is released to the surroundings. Since enthalpy change is the difference between the energy of products an that of reactants. It means that in an exothermic reaction the energy of products is less than that of products. In this case an energy of 315kJ is released to the surroundings.
2. Answer;
Conserved
-The total amount of energy before and after a chemical reaction is the same. Thus, energy is conserved.
Explanation;
-According to the law of conservation of energy, energy is neither created nor destroyed. Energy may change form during a chemical reaction. For example, energy may change form from chemical energy to heat energy when gas burns in a furnace. However, the exact amount of energy remains after the reaction as before, which is true for all chemical reactions.
I read and said it's a weak base
Answer:
fH = - 3,255.7 kJ/mol
Explanation:
Because the bomb calorimeter is adiabatic (q =0), there'is no heat inside or outside it, so the heat flow from the combustion plus the heat flow of the system (bomb, water, and the contents) must be 0.
Qsystem + Qcombustion = 0
Qsystem = heat capacity*ΔT
10000*(25.000 - 20.826) + Qc = 0
Qcombustion = - 41,740 J = - 41.74 kJ
So, the enthaply of formation of benzene (fH) at 298.15 K (25.000 ºC) is the heat of the combustion, divided by the number of moles of it. The molar mass od benzene is: 6x12 g/mol of C + 6x1 g/mol of H = 78 g/mol, and:
n = mass/molar mass = 1/ 78
n = 0.01282 mol
fH = -41.74/0.01282
fH = - 3,255.7 kJ/mol