Answer:
See Explanation
Explanation:

Hence the mass defect is;
[235.04393 + 1.00867] - [ 136.92532 + 96.91095 + 2(1.00867)]
= 236.0526 - 235.85361
= 0.19899 amu
Since 1 amu = 1.66 * 10^-27 Kg
0.19899 amu = 0.19899 * 1.66 * 10^-27 = 3.3 * 10^-28 Kg
Binding energy = Δmc^2
Binding energy = 3.3 * 10^-28 Kg * (3 * 10^8)^2 = 2.97 * 10^-11 J
ii) 
Hence the mass defect is;
[10.01294 + 1.00867] - [7.01600 + 4.00260]
= 11.02161 - 11.0186
= 0.00301 amu
Since 1 amu = 1.66 * 10^-27 Kg
0.00301 amu = 0.00301 * 1.66 * 10^-27 = 4.997 * 10^-30 Kg
Binding energy = Δmc^2
Binding energy = 4.997 * 10^-30 Kg * (3 * 10^8)^2 = 4.5 * 10^-13 J
The answer is D. hope I was right
Answer:
the answer is Ahope this helps you
Answer:
energy and the equilibrium constant.
The sign of the standard free energy change ΔG° of a chemical reaction determines whether the reaction will tend to proceed in the forward or reverse direction.
Similarly, the relative signs of ΔG° and ΔS° determine whether the spontaniety of a chemical reaction will be affected by the temperature, and if so, in what way.
ΔG is meaningful only for changes in which the temperature and pressure remain constant. These are the conditions under which most reactions are carried out in the laboratory; the system is usually open to the atmosphere (constant pressure) and we begin and end the process at room temperature (after any heat we have added or which is liberated by the reaction has dissipated.) The importance of the Gibbs function can hardly be over-stated: it serves as the single master variable that determines whether a given chemical change is thermodynamically possible. Thus if the free energy of the reactants is greater than that of the products, the entropy of the world will increase when the reaction takes place as written, and so the reaction will tend to take place spontaneously. Conversely, if the free energy of the products exceeds that of the reactants, then the reaction will not take place in the direction written, but it will tend to proceed in the reverse direction.
Explanation:
When a substance or solution has pH equal to 7 then it is known as a neutral solution. And a solution with pH more than 7 is basic in nature.
Antacid is a base that has chemical formula
and it is also known as magnesium hydroxide.
Hence, an antacid has pH greater than 7 (making it basic) so that it can neutralize the acid.
Therefore, when excess of acid is formed in the stomach then there occurs more hydrogen ions. Due to which pain is felt in the stomach and in this situation when an antacid is consumed then it releases hydroxide ions as it is a base due to which acid gets neutralized and we feel relieved.
Hence, we can conclude that the pH of an antacid solution that is used to neutralize excess stomach acid is more than 7.