Power = Work done/Time taken
So, keeping this in mind,we can solve it as follows:
= 700/3.1
= 7000/31
= 225.80 W
Answer:
The velocity of the truck after this elastic collision is 15.7 m/s
Explanation:
It is given that,
Mass of the car, 
Mass of the truck, 
Initial velocity of the car,
Initial velocity of the truck, u₂ = 0
After the collision the velocity of the car is, v₁ = -11 m/s
Let v₂ is the velocity of the truck after this elastic collision. Using the conservation of momentum as :

So, the velocity of the truck after this elastic collision is 15.7 m/s. Hence, the correct option is (c).
To solve this problem we will use the definition of the kinematic equations of centrifugal motion, using the constants of the gravitational acceleration of the moon and the radius of this star.
Centrifugal acceleration is determined by

Where,
v = Velocity
r = Radius
From the given data of the moon we know that gravity there is equivalent to

While the radius of the moon is given by

If we rearrange the function to find the speed we will have to



The speed for this to happen is 1.7km/s
Ok bro you are going to have 1 more
Two major scientific discoveries provide strong support for the Big Bang theory: • Hubble's discovery in the 1920s of a relationship between a galaxy's distance from Earth and its speed; and • the discovery in the 1960s of cosmic microwave background radiation. Please give brainliest