The ozone layer is like the glass. the light from the sun enters the atmosphere and when the heat bounces back it is hard to escape the ozone layer therefore the earth's temperature rises
Equation: Mass x Velocity = Momentum
Answer: 93 x 13 = 1,209
Answer:
7.45 s.
Explanation:
Given:
h = 68.1 m
vi = 0 m/s
vf = 42.4 m/s
g = 9.81 m/s^2
Using,
h = vi*t +1/2*(a*t^2)
68.1 = 1/2 * (9.81*t^2)
t = sqrt((68.1*2)/9.81)
= 3.726 s.
Total time of flight = 2*t
= 2 * 3.726
= 7.45 s.
Answer:
33.6 Ns backward.
Explanation:
Impulse: This can be defined as the product of force and time. The S.I unit of impulse is Ns.
From Newton's second law of motion,
Impulse = change in momentum
I = mΔv................................. Equation 1
Where I = impulse, m = mass of the skater, Δv = change in velocity = final velocity - initial velocity.
Given: m = 28 kg, t = 0.8 s, Δv = -1.2-0 = -1.2 m/s (Note: the initial velocity of the skater = 0 m/s)
Substituting into equation 1
I = 28(-1.2)
I = -33.6 Ns
Thus the impulse = 33.6 Ns backward.
Answer:
the volume is 0.253 cm³
Explanation:
The pressure underwater is related with the pressure in the surface through Pascal's law:
P(h)= Po + ρgh
where Po= pressure at a depth h under the surface (we assume = 1atm=101325 Pa) , ρ= density of water ,g= gravity , h= depth at h meters)
replacing values
P(h)= Po + ρgh = 101325 Pa + 1025 Kg/m³ * 9.8 m/s² * 20 m = 302225 Pa
Also assuming that the bubble behaves as an ideal gas
PV=nRT
where
P= absolute pressure, V= gas volume ,n= number of moles of gas, R= ideal gas constant , T= absolute temperature
therefore assuming that the mass of the bubble is the same ( it does not absorb other bubbles, divides into smaller ones or allow significant diffusion over its surface) we have
at the surface) PoVo=nRTo
at the depth h) PV=nRT
dividing both equations
(P/Po)(V/Vo)=(T/To)
or
V=Vo*(Po/P)(T/To) = 0.80 cm³ * (101325 Pa/302225 Pa)*(277K/293K) = 0.253 cm³
V = 0.253 cm³