A single replacement reaction, sometimes called a single displacement reaction, is a reaction in which one element is substituted for another element in a compound. The starting materials are always pure elements, such as a pure zinc metal or hydrogen gas, plus an aqueous compound.
Carbon(C):
number of moles= mass/molar mass(Mr)
=65.5/12
=5.5 moles
Hydrogen(H):
number of moles=mass/molar mass (Mr)
=5.5/1
=5.5 moles
Oxygen (O):
number of moles = mass/molar mass (Mr)
=29.0/16
=1.8 moles
EF= lowest number of moles over each of the elements
So,
C= 5.5/1.8 = 3
H= 5.5/1.8 = 3
O= 1.8/1.8 = 1
Therefore Emperical formula= C3H3O
Answer:
NaOH and HCl
Explanation:
The reaction of sodium hydroxide, NaOH, with hydrochloric acid, HCl, produces NaCl and water.
Use your head or a formula website.
Answer:
The carbocation intermediate reacts with a nucleophile to form the addition product.
Explanation:
The reaction of benzene with an electrophile is an electrophillic substitution reaction. Here the electrophile replaces hydrogen. There is no formation of carbocation as intermediate in the reaction. Infact there is transition state where the electorphile attacks on benzene ring and at the same time the hydrogen gets removed from the benzene. So a transition carbocation is formed.
The general mechanism is shown in the figure.
i) Attack of the electrophile on the benzene (which is the nucleophile)
ii) The carbocation intermediate loses a proton from the carbon bonded to the electrophile.
iii) the carbocation formation is the rate determining step.
iv) There is no formation of addition product.
Thus the wrong statement is
The carbocation intermediate reacts with a nucleophile to form the addition product.