1Al2(SO4)3 + 3ZnCl2 → 2AlCl3 + 3ZnSO4
The coefficients represents moles. There is 1 mole of Aluminum Sulfate, 3 moles of Zinc(II) Chloride, 2 moles of Aluminum Chloride, and 3 moles of Zinc(II) Sulfate.
Now add all the coefficients/moles.
9 is the sum of all the coefficients.
The third equation is properly balanced.
To figure this out, set up tables to check if each element has the same amount on both sides. If you do this for the third equation, copper, hydrogen, oxygen, and nitrogen are all balanced,
The first equation is incorrect due to the fact Iron, Fe, is not balanced on both sides. This is shown by the subscripts given.
The second equation is incorrect as Sulfur is not properly balanced and neither is sodium.
The fourth equation is incorrect as Aluminum is not properly balanced. On the reactants side, Aluminum is 4 while on the products, Aluminum is 8.
Hope this helps!
Ag,Cu,Mg,S are the answers...............
Answer:
The answer to your question is V2 = 434.7 l
Explanation:
Data
Volume 1 = V1 = 240 l Volume 2 = ?
Temperature 1 = T1 = 479°K Temperature 2 = T2 = 293°K
Pressure 1 = P1 = 300 KPa Pressure 2 = P2 = 101.325 Kpa
Process
1.- Use the combined gas law to solve this problem
P1V1/T1 = P2V2/t2
-Solve for V2
V2 = P1V1T2 / T1P2
2.- Substitution
V2 = (300)(240)(293) / (479)(101.325)
3.- Simplification
V2 = 21096000 / 48534.675
4.- Result
V2 = 434.7 l
Answer : The enthalpy of the given reaction will be, -1048.6 kJ
Explanation :
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
The main reaction is:

The intermediate balanced chemical reactions are:
(1)

(2)

(3)

(4)

(5)

Now reversing reaction 2, multiplying reaction 3 by 4, reversing reaction 1 and multiplying by 2, reversing reaction 5 and multiplying by 2 and then adding all the equations, we get :
(1)

(2)

(3)

(4)

(5)

The expression for enthalpy of main reaction will be:



Therefore, the enthalpy of the given reaction will be, -1048.6 kJ