The empirical formula : C₁₂H₄F₇
The molecular formula : C₂₄H₈F₁₄
<h3>Further explanation</h3>
mol C (MW=12 g/mol)

mol H(MW=1 g/mol) :

mol F(MW=19 g/mol)

mol ratio of C : H : O =1.52 : 0.51 : 0.89=3 : 1 : 1.75=12 : 4 : 7
Empirical formula : C₁₂H₄F₇
(Empirical formula)n=molecular formula
( C₁₂H₄F₇)n=562 g/mol
(12.12+4.1+7.19)n=562
(281)n=562⇒ n =2
Molecular formula : C₂₄H₈F₁₄
1) Temperature (heat) of the solution
2) Concentration (amount) of both solvent (usually water) and solute (substance being dissolved by solvent)
3) Movement (kinetic energy) of the solution, as in shaking/stirring
Answer: V = 33.9 L
Explanation: We will use Charles Law to solve for the new volume.
Charles Law is expressed in the following formula. Temperatures must be converted in Kelvin.
V1 / T1 = V2 / T2 then derive for V2
V2 = V1 T2 / T1
= 35 L ( 308 K ) / 318 K
= 33.9 L
Answer:
Region B, because the pressure inside the cylinder is equal to the vapor pressure of water at 80∘C when both liquid and gas phases are present.
Explanation:
As expansion occurs, liquid water evaporates reversibly, holding the pressure constant at the equilibrium vapor pressure of water at 80∘C(0.47atm) 80∘C (0.47 atm). When all of the liquid has evaporated, the pressure drops and follows the ideal gas law.