Answer:
Explanation:
The "traditional" form of Coulomb's law, explicitly the force between two point charges. To establish a similar relationship, you can use the integral form for a continuous charge distribution and calculate the field strength at a given point.
In the case of moving charges, we are in presence of a current, which generates magnetic effects that in turn exert force on moving charges, therefore, no longer can consider only the electrostatic force.
Answer:
Explanation:
For a linear elastic material Young's modulus is a constant that is given by:
Here, F is the force exerted on an object under tensio, A is the area of the cross-section perpendicular to the applied force, is the amount by which the length of the object changes and is the original length of the object. In this case the force is the weight of the mass:
Replacing the given values in Young's modulus formula:
We are given:
v0 = initial velocity = 18 km/h
d = distance = 4 km
v = final velocity = 75 km/h
a =?
<span>
We can solve this problem by using the formula:</span>
v^2 = v0^2 + 2 a d
75^2 = 18^2 + 2 (a) * 4
5625 = 324 + 8a
<span>a = 662.625 km/h^2</span>