First example: book, m= 0.75 kg, h=1.5 m, g= 9.8 m/s², it has only potential energy Ep,
Ep=m*g*h=0.75*9.8*1.5=11.025 J
Second example: brick, m=2.5 kg, v=10 m/s, h=4 m, it has potential energy Ep and kinetic energy Ek,
E=Ep+Ek=m*g*h + (1/2)*m*v²=98 J + 125 J= 223 J
Third example: ball, m=0.25 kg, v= 10 m/s, it has only kinetic energy Ek
Ek=(1/2)*m*v²=12.5 J.
Fourth example: stone, m=0.7 kg, h=7 m, it has only potential energy Ep,
Ep=m*g*h=0.7*9.8*7=48.02 J
The order of examples starting with the lowest energy:
1. book, 2. ball, 3. stone, 4. brick
Acceleration = velocity/time
A= 3.5m/s/15s
A= 0.23m/s^2
Answer:
1000 Hz
Explanation:
<em>The frequency would be 1000 Hz.</em>
The frequency, wavelength, and speed of a wave are related by the equation:
<em>v = fλ ..................(1)</em>
where v = speed of the wave, f = frequency of the wave, and λ = wavelength of the wave.
Making f the subject of the formula:
<em>f = v/λ.........................(2)</em>
Also, speed (v) = distance/time.
From the question, distance = 900 m, time = 3.0 s
Hence, v = 900/3.0 = 300 m/s
Substitute v = 300 and λ = 0.3 into equation (2):
f = 300/0.3 = 1000 Hz
D. to be structural material
Imma go with A.
Hope this helps:)