It changes from a liquid from to a solid.
I hope this helps!
Answer:
1.07 g Ba
Explanation:
Hello there!
In this case, according to the definition of the Avogadro's number and the molar mass, it is possible to say that 6.022x10^{23} atoms of barium equal one mole, and at the same time, 1 mole equals 137.327 grams of this element; thus, it is possible to say that 6.022x10^{23} atoms of barium have a mass of 137.327 grams; therefore, it i possible for us to calculate the required mass in grams as shown below:

Best regards!
Answer:
See the explanation
Explanation:
In this case, in order to get an <u>elimination reaction</u> we need to have a <u>strong base</u>. In this case, the base is the phenoxide ion produced the phenol (see figure 1).
Due to the resonance, we will have a more stable anion therefore we will have a less strong base because the negative charge is moving around the molecule (see figure 2).
Finally, the phenoxide will attack the <u>primary carbon</u> attached to the Cl. The C-Cl bond would be broken and the C-O would be produced <u>at the same time</u> to get a substitution (see figure 1).
The much of the sample that would remain unchanged after 140 seconds is 2.813 g
Explanation
Half life is time taken for the quantity to reduce to half its original value.
if the half life for Scandium is 35 sec, then the number of half life in 140 seconds
=140 sec/ 35 s = 4 half life
Therefore 45 g after first half life = 45 x1/2 =22.5 g
22.5 g after second half life = 22.5 x 1/2 =11.25 g
11.25 g after third half life = 11.25 x 1/2 = 5.625 g
5.625 after fourth half life = 5.625 x 1/2 = 2.813
therefore 2.813 g of Scandium 47 remains unchanged.