1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
guajiro [1.7K]
3 years ago
6

Parallel to the handle, what is the force of friction acting on the suitcase?

Physics
1 answer:
mrs_skeptik [129]3 years ago
5 0
 <span>Lets call F the friction force which will act horizontally backwards. 

As you are travelling at a constant velosity horizontally there is no overall resultant force in this direction. 

ie. the force you pull with will be equal to the friction force resisting you. (you will initially have to have pulled with a greater force than the friction to get the suitcase moving) 

the value of your force pulling is 60 cos26.9 (horizontally) - you should have learnt about resolving forces. 

this must be equal to F 

so 

F=60cos26.9 
F=53.5N

hope this helps you
please mark this as brainliest answer</span>
You might be interested in
A gas expands and does PV work on its surroundings equal to 319 J. At the same time, it absorbs 136 J of heat from the surroundi
LiRa [457]

Answer:

The change in energy of the gas during the process is -1.83\times 10^{2} joules.

Explanation:

We can represent this process by the First Law of Thermodynamics, in which gas does work on its surroundings and absorbs heat from there to describe its change in energy. In other words:

Q_{in} - W_{out} = \Delta E

Where:

Q_{in} - Heat absorbed by the gas, measured in joules.

W_{out} - Work done by the gas, measured in joules.

\Delta E - Change in energy, measured in joules.

If we know that Q_{in} = 1.36\times 10^{2}\,J and W_{out} = 3.19\times 10^{2}\,J, the change in energy of the gas is:

\Delta E = 1.36\times 10^{2}\,J-3.19\times 10^{2}\,J

\Delta E = -1.83\times 10^{2}\,J

The change in energy of the gas during the process is -1.83\times 10^{2} joules.

3 0
3 years ago
An electron travels west to east with a kinetic energy of 10 keV. The Earth's magnetic field in Pittsburgh is 19,911.5 nT in the
ch4aika [34]

Explanation:

It is given that,

Kinetic energy of the electron, E_k=10\ keV=10^4\ eV=1.6\times 10^{-15}\ J

Let the east direction is +x direction, north direction is +y direction and vertical direction is +z direction.    

The magnetic field in north direction, B_y=19911.5\ nT

The magnetic field in west direction, B_x=-3257.1\ nT

The magnetic field in vertical direction, B_z=48381.8 \ nT

Magnetic field, B=(-3257.1i+19911.5j+48381.8k)\ nT

Firstly calculating the velocity of the electron using the kinetic energy formulas as :

E_k=\dfrac{1}{2}mv^2

v=\sqrt{\dfrac{2E_k}{m}}

v=\sqrt{\dfrac{2\times 1.6\times 10^{-15}}{9.1\times 10^{-31}}}

v=5.92\times 10^7 i\ m/s (as it is moving from west to east)

The force acting on the charged particle in the magnetic field is given by :

F=q(v\times B)

F=1.6\times 10^{-19}\times (5.92\times 10^7 i\times (-3257.1i+19911.5j+48381.8k)\times 10^{-9})

Since, i\times j=k\ \\j\times k=i\\k\times i=j

And, i\times i=j\times j=k\times k=0

F=1.6\times 10^{-19}\times [1178 k-2864.20j]

|F|=1.6\times 10^{-19}\times \sqrt{1178^2+2864.20^2}

F=4.95\times 10^{-16}\ N

(b) Let a is the acceleration of the electron. It can be calculated as :

a=\dfrac{F}{m}

a=\dfrac{4.95\times 10^{-16}}{9.1\times 10^{-31}}

a=5.43\times 10^{14}\ m/s^2

Hence, this is the required solution.

4 0
3 years ago
On Venus, the acceleration due to gravity is 8.87 m / s 2 . How far would a 17 g rock fall from rest in 6.5 s if the only force
algol [13]

Answer:

187.38 m

Explanation:

Using the equation of motion

s = ut + 1/2gt²...................... Equation 1

Where s = distance of fall, u = initial velocity of the rock, t = time taken for the rock to fall from rest, g = acceleration due to gravity of venus.

Given: u = 0 m/s ( from rest), t = 6.5 s, g = 8.87 m/s².

substituting into equation 1

s = 0(6.5) + 1/2(8.87)(6.5)²

s = 0 + 374.7575/2

s = 187.38 m.

Hence the rock will fall 187.38 m

7 0
4 years ago
What momentum of a 50kilogram ice skater gliding across the ice at a speed of 5m/s?
Ivenika [448]
Momentum (P) = Mass (kg) * Velocity (m/s)

P = M * V
P = 50 * 5
P = 250

So momentum is 250 kgm/s

5 0
3 years ago
Read 2 more answers
An object moving north with an initial velocity of 14 m/s accelerates 5 m/s2 for 20 seconds. What is the final velocity of the o
lisabon 2012 [21]

Answer:

option C

Explanation:

Final velocity of the object is 114 m / s. Hence, final velocity of the object is 114 m / s.

5 0
3 years ago
Read 2 more answers
Other questions:
  • A laser pulse with wavelength 520 nm contains 4.40 mj of energy. how many photons are in the laser pulse?
    10·1 answer
  • True or false most elements are solid at room temperature
    14·1 answer
  • (will mark brainliest)Which of the following has the most potential energy?
    13·2 answers
  • A force F produces an acceleration a on an object of mass m. A force 3F is exerted on a second object, and an acceleration 8a re
    8·1 answer
  • Which of the following is a property of all periodic waves?
    6·1 answer
  • A 1,200-watt water heater is plugged into a 120-volt outlet and used for 1.5 hours. How much current runs through the vacuum?
    5·2 answers
  • The picture above shows a football player kicking a football. This is known as two dimensional motion. In which direction does t
    7·1 answer
  • How long will it take the cart to to travel 2.8m, starting from rest?
    14·1 answer
  • What was john philip career​
    15·1 answer
  • 32. A ball is going to fall downward through a vacuum chamber. If it has maximum potential energy at the top and maximum kinetic
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!