Answer:
The change in energy of the gas during the process is
joules.
Explanation:
We can represent this process by the First Law of Thermodynamics, in which gas does work on its surroundings and absorbs heat from there to describe its change in energy. In other words:

Where:
- Heat absorbed by the gas, measured in joules.
- Work done by the gas, measured in joules.
- Change in energy, measured in joules.
If we know that
and
, the change in energy of the gas is:


The change in energy of the gas during the process is
joules.
Explanation:
It is given that,
Kinetic energy of the electron, 
Let the east direction is +x direction, north direction is +y direction and vertical direction is +z direction.
The magnetic field in north direction, 
The magnetic field in west direction, 
The magnetic field in vertical direction, 
Magnetic field, 
Firstly calculating the velocity of the electron using the kinetic energy formulas as :



(as it is moving from west to east)
The force acting on the charged particle in the magnetic field is given by :


Since, 
And, 
![F=1.6\times 10^{-19}\times [1178 k-2864.20j]](https://tex.z-dn.net/?f=F%3D1.6%5Ctimes%2010%5E%7B-19%7D%5Ctimes%20%5B1178%20k-2864.20j%5D)


(b) Let a is the acceleration of the electron. It can be calculated as :



Hence, this is the required solution.
Answer:
187.38 m
Explanation:
Using the equation of motion
s = ut + 1/2gt²...................... Equation 1
Where s = distance of fall, u = initial velocity of the rock, t = time taken for the rock to fall from rest, g = acceleration due to gravity of venus.
Given: u = 0 m/s ( from rest), t = 6.5 s, g = 8.87 m/s².
substituting into equation 1
s = 0(6.5) + 1/2(8.87)(6.5)²
s = 0 + 374.7575/2
s = 187.38 m.
Hence the rock will fall 187.38 m
Momentum (P) = Mass (kg) * Velocity (m/s)
P = M * V
P = 50 * 5
P = 250
So momentum is 250 kgm/s
Answer:
option C
Explanation:
Final velocity of the object is 114 m / s. Hence, final velocity of the object is 114 m / s.