1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rosijanka [135]
3 years ago
8

How could you group pennies,nickels, and dimes together

Physics
1 answer:
julsineya [31]3 years ago
5 0

There isn't a direct answer to this, but I can show you!

This is how you group Pennies, Nickels, and Dimes.

1 Penny= 1 cent.

1 Nickel= 5 cents.

1 Dime= 10 cents.

Imagine if there was 5 pennies, 3 dimes, and 8 Nickels.

That might seem like a lot of numbers, but it's pretty simple!

You know how pennies are worth 1 cent? If we had 5 pennies, that would be 5 cents.

1+1+1+1+1=5 cents.

Then, we have 3 dimes. Dimes are each 10 cents.

So, 10x3 (If you know multiplication,  if not, you will learn it later) :)

10+10+10=  30 cents.

Now, nickels. We have 8 nickels! Remember, each nickel is 5 cents.

5+5+5+5+5+5+5+5=

40 Nickels.

Now add all of the coins up.

5 cents + 30 cents + 40 cents = 75 cents!

I hope this helped! If you need more help, you can ask me. :)

You might be interested in
What is the velocity of an object that has been in free fall for 1.5s?
Crank

Answer:

D. 15 m/s downward

Explanation:

v = at + v₀

v = (-9.8 m/s²) (1.5 s) + (0 m/s)

v = -14.7 m/s

Rounded to two significant figures, the answer is D, 15 m/s downward.

8 0
3 years ago
Am i correct? If not then which one
cupoosta [38]

Answer:

Yes, it's correct

Explanation:

Newton's second Law states that the acceleration of an object is proportional to the net force applied on it, according to the equation:

F=ma

where

F is the net force on the object

m is the mass of the object

a is the acceleration of the object

We can re-arrange the previous equation in order to solve explicitely for a, the acceleration, and we find:

F=ma\\\frac{F}{m}=\frac{ma}{m}\\\frac{F}{m}=a\\a=\frac{F}{m}

So, we see that the acceleration is proportional to the net force and inversely proportional to the mass of the object.

4 0
3 years ago
PLEASE ANSWER, I NEED HELP
Scorpion4ik [409]

1) The gravitational force between Ellen and the moon is 1.56\cdot 10^{-3} N

2) The two forces are equal, while the acceleration of the bus is smaller than the acceleration of the bicycle.

Explanation:

1)

The magnitude of the gravitational force between two objects is given by

F=G\frac{m_1 m_2}{r^2}

where

G=6.67\cdot 10^{-11} m^3 kg^{-1}s^{-2} is the gravitational constant

m_1, m_2 are the masses of the two objects

r is the separation between them

In this problem, we have:

m_1 = 47 kg is the mass of Ellen

m_2 = 7.35\cdot 10^{22} kg is the mass of the moon

r=3.84\cdot 10^8 m is the distance between Ellen and the moon

Substituting, we find the gravitational force between Ellen and the moon:

F=(6.67\cdot 10^{-11})\frac{(47)(7.35\cdot 10^{22})}{(3.84\cdot 10^8)^2}=1.56\cdot 10^{-3} N

2)

We can analyze the forces acting in the collision between the bus and the bicycle by using Newton's third law of motion, which states that:

"When an object A exerts a force (called action) on an object B, then object B exerts an equal and opposite force (called reaction) on object A"

Applied to our problem, this means that the force exerted by the bus on the bicycle during the collision (action force) is equal (and opposite) to the force exerted by the bicycle on the bus (reaction force).

Now let's analyze the accelerations of the two vehicles. We can find the acceleration of each vehicle by using Newton's second law:

a=\frac{F}{m}

where

a is the acceleration

F is the force exerted on the vehicle

m is the mass of the vehicle

As we said previously, the force F exerted on each of the two vehicles: so, the acceleration only depends on the mass. In particular, the acceleration is inversely proportional to the mass: therefore, the larger the mass of the vehicle, the smaller the acceleration. This means that the acceleration of the bus is smaller than the acceleration of the bicycle.

Learn more about gravitational force:

brainly.com/question/1724648

brainly.com/question/12785992

And about Newton's third law:

brainly.com/question/11411375

#LearnwithBrainly

6 0
3 years ago
A ball is thrown horizontally from the top of a 55 m building and lands 150 m from the base of the building. Ignore air resistan
PtichkaEL [24]

Answer:

a) t =3.349 s

b) V_x,i = 44.8 m/s

c) V_y,f = 32.85 m/s

d)  V = 55.55 m/s

Explanation:

Given:

- Total throw in x direction x(f) = 150 m

- Total distance traveled down y(f) = 55 m

Find:

a) How long is the rock in the air in seconds.  

b) What must have been the initial horizontal component of the velocity, in meters per second?

c) What is the vertical component of the velocity just before the rock hits the ground, in meters per second?

d) What is the magnitude of the velocity of the rock just before it hits the ground, in meters per second?

Solution:

- Use the second equation of motion in y direction:

                                 y(f) = y(0) + V_y,i*t + 0.5*g*t^2

- V_y,i = 0 (horizontal throw)

                                 55 = 0 + 0 + 0.5*(9.81)*t^2

                                 t = sqrt ( 55 * 2 / 9.81 )

                                 t =3.349 s

- Use the second equation of motion in x direction:

                                 x(f) = x(0) + V_x,i*t

                                 150 = 0 + V_x,i*3.349

                                  V_x,i = 150 / 3.349 = 44.8 m/s

- Use the first equation of motion in y direction:

                                 V_y,f = V_y,i + g*t

                                 V_y,f = 0 + 9.81*3.349

                                 V_y,f = 32.85 m/s

- The magnitude of velocity of ball when it hits the ground is:

                                 V^2 = V_y,f^2 + V_x,i^2

                                 V = sqrt (32.85^2 + 44.8^2)

                                 V = 55.55 m/s

5 0
3 years ago
The aurora is caused when electrons and protons, moving in the earth’s magnetic field of ≈5.0×10−5T, collide with molecules of t
ollegr [7]

Answer:

8.79*10^6 rad/s

Explanation:

To find the frequency of the circular orbit for an electron you use the following expression, for the radius of the trajectory of an electron, that travels trough a constant magnetic field:

r=\frac{mv}{qB}         (1)

r: radius of the trajectory

m: mass of the electron = 9.1*10^-31 kg

v: speed of the electron = 1.0*10^6 m/s

q: charge of the electron = 1.6*10^-19 C

B: magnitude of the magnetic field = 5.0*10^-5 T

You use the fact that the angular frequency in a circular motion is given by:

\omega=\frac{v}{r}

Then, you solve the equation (1) in order to obtain v/r:

\frac{v}{r}=\omega=\frac{qB}{m}

Finally, you replace the values of the parameters:

\omega=\frac{(1.6*10^{-19}C)(5.0*10^{-5}T)}{9.1*10^{-31}kg}\\\\\omega=8.79*10^6\frac{rad}{s}

hence, the angular frequency is 8.79*10^6 rad/s

The frequency is:

f=2\pi \omega=5.5*10^7Hz

5 0
3 years ago
Other questions:
  • Define work done against friction<br>(helpp)​
    15·1 answer
  • What do significant figures in a measurement include___________________________________.
    7·1 answer
  • What are three ways in which heat is transferred
    9·1 answer
  • Which of the following jobs does not require good swimming ability
    6·1 answer
  • Which best describe the kinetic energy of the particles in solids, liquids, and gases? Check all that apply.
    11·2 answers
  • What does an electric current produce
    13·1 answer
  • Which of the following is a result of the transfer of energy?
    9·2 answers
  • Un sirop bien sucrée
    6·2 answers
  • What happens to the strength of an electromagnet if the number of loops of wire is increased?
    13·1 answer
  • What is the helmet for
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!