1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nitella [24]
3 years ago
9

n her abstract works Electric Dress and Untitled, Japanese artist Atsuko Tanaka created ________ through the repetition of lines

and circular shapes in bold colors. a. scale b. unity c. balance d. emphasis e. focal point

Physics
1 answer:
a_sh-v [17]3 years ago
4 0

Answer:

b. unity

Explanation:

In the images I added you can observe Atsuko Tanak's works, in both of them you can observe how <em>the sum of colorful and repetitive elements creates the sensation of unity.</em>

I hope you find this information useful and interesting! Good luck!

You might be interested in
Gretchen runs the first 4.0 km of a race at 5.0 m/s. Then a stiff wind comes up, so she runs the last 1.0 km at only 4.0 m/s.
KIM [24]

Answer:

The velocity is v = 4.76 \ m/s

Explanation:

From the question we are told that

   The first distance is   d_1  =  4.0 \ km  =  4000 \ m

   The  first speed  is  v_1 =  5.0 \ m/s

    The  second distance is  d_2  =  1.0 \ km  =  1000 \ m

    The  second speed  is  v_2  =  4.0 \ m/s

Generally the time taken for first distance is  

      t_1 =  \frac{d_1 }{v_1 }

        t_1 =  \frac{4000}{5}

       t_1 =  800 \ s

The time taken for second  distance is

           t_1 =  \frac{d_2 }{v_2 }

        t_1 =  \frac{1000}{4}

       t_1 =  250 \ s

The total time is mathematically represented as

     t =  t_1 + t_2

=>   t =  800 + 250

=>    t =  1050 \ s

Generally the constant velocity that would let her finish at the same time is mathematically represented as

      v =  \frac{d_1 + d_2}{t }

=>    v =  \frac{4000 + 1000}{1050 }

=>    v = 4.76 \ m/s

7 0
3 years ago
PLEASE HELP ASAP!!!
Mama L [17]
C landslide I believe
8 0
3 years ago
A carnival game consists of a two masses on a curved frictionless track, as pictured below. The player pushes the larger object
Harman [31]

Answer:

v₁₀ = 1.90 m / s

Explanation:

In this exercise we are given the maximum height data, with energy we can know how fast the body came out

Final mechanical energy, maximum height

    Em_{f} = U = m g h

Initial mechanical energy, in the lower part of the track

    Em₀ = K = ½ m v²

    Em=   Em_{f}

    ½ m v² = m g h

    v = √ 2gh

Now we can use the moment to find the speed with which objects collide

The large object has a mass M = 5.41 kg a velocity starts v₁₀, the small object has a mass m = 1.68 kg an initial velocity of zero v₂₀ = 0 and  final velocity v

Initial before the crash

    p₀ = M v₁₀ + 0

Final after the crash

      p_{f} = M v1f + m v

   p₀ =   p_{f}

   M v₁₀ = M v_{1f}+ m v

As the shock is elastic the kinetic energy is conserved

     K₀ = K_{f}

    ½ M v₁₀² = ½ M v_{1f}² + ½ m v²

Let's write the system of equations

    M v₁₀ = M  v_{1f} + m v

    M v1₁₀² = M v_{1f}² + m v²

We cleared v1f in the first we replaced in the second

   v_{1f} = (M v₁₀ - mv) / M

    M v₁₀² = M (M v₁₀ - mv)² / M² + m v²

    M v₁₀² = 1 / M (M² v₁₀² - 2mM v v₁₀ + m² v²) +m v²

     v₁₀² (M - M) + 2 m v v₁₀ - v² (m2 + m) / M = 0

     2 m v₁₀ - v (m + 1) m/ M = 0

     v₁₀ = v (m +1) / (2M)

Let's substitute the value of v

     v1₁₀= √ (2gh) (m +1) / (2M)

Let's calculate

    v₁₀ = √ (2 9.8 3) (1+ 1.68) / (2  5.41)

    V₁₀ = 7.668 (2.68) / 10.82

   v₁₀ = 1.90 m / s

5 0
3 years ago
How does kinect energy affect the stopping distance of a vehicle traveling at 30 mph compared to the same vehicle traveling at 6
mote1985 [20]

If it is the same vehicle, then the 60mph vehicle has more kinetic energy since it is moving faster. Therefore, it requires more energy to stop, and if it is the same car with the same beak system, the braking distance of the 30mph car will be significantly shorter than the 60mph car.



8 0
3 years ago
What electrons are in “motion”, what do you have?
Sergeeva-Olga [200]

Answer:

When a positive charged object is placed near a conductor electrons are attracted the the object. ... When electric voltage is applied, an electric field within the metal triggers the movement of the electrons, making them shift from one end to another end of the conductor. Electrons will move toward the positive side. As you know, electrons are always moving. They spin very quickly around the nucleus of an atom. As the electrons zip around, they can move in any direction, as long as they stay in their shell.

7 0
3 years ago
Other questions:
  • The broom hocket fame helps you work on what skill?
    10·1 answer
  • What is an example of velocity?
    7·1 answer
  • A 4.5 kg box slides down a 4.3-m-high frictionless hill, starting from rest, across a 2.0-m-wide horizontal surface, then hits a
    7·1 answer
  • A body is dropped from a height of 30m. What is the velocity of the body after it has covered a distance of 20 m? (Given g= 10 m
    6·2 answers
  • At do we call the cells that are made as the end result<br> of meiosis?
    12·1 answer
  • Pls help! <br> What is movement of energy from one system to another also known as?
    11·1 answer
  • If you throw a ball into the air, Earth exerts a force on the ball. The ball in the air exerts no force on Earth. True or false?
    10·1 answer
  • What causes tides on earth
    12·1 answer
  • Which of the following statements best describes an electromagnetic wave with a short wavelength?
    6·2 answers
  • 4.2.5 quiz waves and technology
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!