The answer is C. Nicotine is the substance found in tobacco smoke that stimulates the brain.
Answer:
1.60x10⁶ billions of g of CO₂
Explanation:
Let's calculate the production of CO₂ by a single human in a day. The molar mass of glucose is 180.156 g/mol and CO₂ is 44.01 g/mol. By the stoichiometry of the reaction:
1 mol of C₆H₁₂O₆ -------------------------- 6 moles of CO₂
Transforming for mass multiplying the number of moles by the molar mass:
180.156 g of C₆H₁₂O₆ ----------------- 264.06 g of CO₂
4.59x10² g ---------------- x
By a simple direct three rule:
180.156x = 121203.54
x = 672.77 g of CO₂ per day per human
So, in a year, 6.50 billion of human produce:
672.77 * 365 * 6.50 billion = 1.60x10⁶ billions of g of CO₂
Answer:
Explanation:
Did you mean: V = d/t a = (V - Vit Average = (V+ + V)/2 with constant acceleration d = Vit + 2 at? Vi = (V2 + 2ad)1/2 =VV2 + 2ad A stick figure throws a ball straight up into the air at 5 m/s. g = -9.81 m/s2 1. How long does it take to reach the top? 2. How long does it take to come back to the level of release? 3. If the hand is 1 m from the ground, how long will it take to hit the ground if the ball is not caught? 4. How high is the ball at the top from the ground? 5. What is the displacement of the ball, if it is caught on return? 6. What is the displacement of the ball to the top from release? 7. What is final velocity when you catch the ball on return to your hand? 8. What is the final velocity as it hits the ground? 9. What is the velocity at the top?
Showing results for V = d/t a = (V - Vil/t Vaverage = (V+ + V)/2 with constant acceleration d = Vit + 2 at? Vi = (V2 + 2ad)1/2 =VV2 + 2ad A stick figure throws a ball straight up into the air at 5 m/s. g = "-9.81" m/s2 1. How long does it take to reach the top? 2. How long does it take to come back to the level of release? 3. If the hand is 1 m from the ground, how long will it take to hit the ground if the ball is not caught? 4. How high is the ball at the top from the ground? 5. What is the displacement of the ball, if it is caught on return? 6. What is the displacement of the ball to the top from release? 7. What is final velocity when you catch the ball on return to your hand? 8. What is the final velocity as it hits the ground? 9. What is the velocity at the top?
Search instead for V = d/t a = (V - Vil/t Vaverage = (V+ + V)/2 with constant acceleration d = Vit + 2 at? Vi = (V2 + 2ad)1/2 =VV2 + 2ad A stick figure throws a ball straight up into the air at 5 m/s. g = -9.81 m/s2 1. How long does it take to reach the top? 2. How long does it take to come back to the level of release? 3. If the hand is 1 m from the ground, how long will it take to hit the ground if the ball is not caught? 4. How high is the ball at the top from the ground? 5. What is the displacement of the ball, if it is caught on return? 6. What is the displacement of the ball to the top from release? 7. What is final velocity when you catch the ball on return to your hand? 8. What is the final velocity as it hits the ground? 9. What is the velocity at the top?
Answer:
First, find out how many moles of N2I6 you have. Then convert that to grams.
molar mass N2I6 = 789 g
moles N2I6 = 8.2x1022 molecules N2I6 x 1 mole/6.02x1023 molecules = 1.36x10-1 moles = 0.136 moles
grams N2I6 = 0.136 moles x 789 g/mole = 107 g = 110 g (to 2 significant figures)