1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fiesta28 [93]
3 years ago
13

Whats is the purpose of the stator winding​

Engineering
1 answer:
Flura [38]3 years ago
3 0
Winding basically, obvious
You might be interested in
An aluminum metal rod is heated to 300oC and, upon equilibration at this temperature, it features a diameter of 25 mm. If a tens
Natalka [10]

Answer:

It will results in mechanical hardening.

5 0
3 years ago
Read 2 more answers
Two streams of air enter a control volume: stream 1 enters at a rate of 0.05 kg / s at 300 kPa and 380 K, while stream 2 enters
alex41 [277]

Answer:

0.08kg/s

Explanation:

For this problem you must use 2 equations, the first is the continuity equation that indicates that all the mass flows that enter is equal to those that leave the system, there you have the first equation.

The second equation is obtained using the first law of thermodynamics that indicates that all the energies that enter a system are the same that come out, you must take into account the heat flows, work and mass flows of each state, as well as their enthalpies found with the temperature.

 

finally you use the two previous equations to make a system and find the mass flows

I attached procedure

5 0
3 years ago
Consider a space shuttle weighing 100 kN. It is travelling at 310 m/s for 30 minutes. At the same time, it descends 2200 m. Cons
mixas84 [53]

Answer:

work done = 48.88 × 10^{9} J

Explanation:

given data

mass = 100 kN

velocity =  310 m/s

time = 30 min = 1800 s

drag force = 12 kN

descends = 2200 m

to find out

work done by the shuttle engine

solution

we know that work done here is

work done = accelerating work - drag work - descending work

put here all value

work done = ( mass ×velocity ×time  - force ×velocity ×time  - mass ×descends )  10³ J

work done = ( 100 × 310 × 1800  - 12×310 ×1800  - 100 × 2200 )  10³ J

work done = 48.88 × 10^{9} J

6 0
3 years ago
A pipe is insulated such that the outer radius of the insulation is less than the critical radius. Now the insulation is taken o
irina [24]

Answer:

the heat transfer from the pipe will decrease when the insulation is taken off for r₂< r_{cr}

where;

r₂ = outer radius

r_{cr} = critical radius

Explanation:

Note that the critical radius of insulation depends on the thermal conductivity of the insulation k and the external convection heat transfer coefficient h .

r_{cr} =\frac{k}{h}

The rate of heat transfer from the cylinder increases with the addition of insulation for outer radius less than  critical radius (r₂< r_{cr}) 0,  and reaches a maximum when r₂ = r_{cr}, and starts to decrease for r₂< r_{cr}. Thus, insulating the pipe may actually increase the rate of heat transfer from the pipe instead of decreasing it when r₂< r_{cr} .

7 0
3 years ago
For each of the following combinations of parameters, determine if the material is a low-loss dielectric, a quasi-conductor, or
Alborosie

Answer:

Glass: Low-Loss dielectric

  α = 8.42*10^-11 Np/m

  β = 468.3 rad/m

  λ = 1.34 cm

  up = 1.34*10^8 m/s

  ηc = 168.5 Ω

Tissue: Quasi-Conductor

  α = 9.75 Np/m

  β = 12.16 rad/m

  λ = 51.69 cm

  up = 0.52*10^8 m/s

  ηc = 39.54 + j 31.72 Ω        

Wood: Good conductor

  α = 6.3*10^-4 Np/m

  β = 6.3*10^-4 Np/m

  λ = 10 km

  up = 0.1*10^8 m/s

  ηc = 6.28*( 1 + j )

Explanation:

Given:

Glass with µr = 1, εr = 5, and σ = 10−12 S/m at 10 GHz

Animal tissue with µr = 1, εr = 12, and σ = 0.3 S/m at 100 MHz.

Wood with µr = 1, εr = 3, and σ = 10−4 S/m at 1 kHz

Find:

Determine if  the material is a low-loss dielectric, a quasi-conductor, or a good conductor, and then  calculate α, β, λ, up, and ηc:

Solution:

- We need to determine the loss tangent to determine category of the medium as follows:

                                σ / w*εr*εo

Where, w is the angular speed of wave

            εo is the permittivity of free space = 10^-9 / 36*pi

- Now we classify as follows:

    Glass = \frac{10^-^1^2 }{2*\pi * 10*10^9 * \frac{5*10^-^9}{36\pi } } = 3.6*10^-^1^3\\\\Tissue = \frac{0.3 }{2*\pi * 100*10^6 * \frac{12*10^-^9}{36\pi } } = 4.5\\\\Wood = \frac{10^-^4 }{2*\pi * 1*10^3 * \frac{3*10^-^9}{36\pi } } = 600\\  

- For σ / w*εr*εo < 0.01 --- Low-Loss dielectric and σ / w*εr*εo > 100 --- Good conducting material.

    Glass: Low-Loss dielectric

    Tissue: Quasi-Conductor

    Wood: Good conductor

- Now we will use categorized material base equations from Table 17-1 as follows:

     Glass: Low-Loss dielectric

          α = (σ / 2)*sqrt(u / εr*εo) = (10^-12 / 2)*sqrt( 4*pi*10^-7/5*8.85*10^-12)

          α = 8.42*10^-11 Np/m

          β = w*sqrt (u*εr*εo) = 2pi*10^10*sqrt (4*pi*10^-7*5*8.85*10^-12)

          β = 468.3 rad/m

          λ = 2*pi / β = 2*pi / 468.3

          λ = 1.34 cm

          up = λ*f = 0.0134*10^10

          up = 1.34*10^8 m/s

          ηc = sqrt ( u / εr*εo ) = sqrt( 4*pi*10^-7/12*8.85*10^-12)

          ηc = 168.5 Ω

     Tissue: Quasi-Conductor

          α = (σ / 2)*sqrt(u / εr*εo) = (0.3 / 2)*sqrt( 4*pi*10^-7/12*8.85*10^-12)

          α = 9.75 Np/m

          β = w*sqrt (u*εr*εo) = 2pi*100*10^6*sqrt (4*pi*10^-7*12*8.85*10^-12)

          β = 12.16 rad/m

          λ = 2*pi / β = 2*pi / 12.16

          λ = 51.69 cm

          up = λ*f = 0.5169*100*10^6

          up = 0.52*10^8 m/s

          ηc = sqrt ( u / εr*εo )*( 1 - j (σ / w*εr*εo))^-0.5

          ηc = sqrt (4*pi*10^-7*12*8.85*10^-12)*( 1 - j 4.5)^-0.5

          ηc = 39.54 + j 31.72 Ω

     Wood: Good conductor

          α = sqrt (pi*f*σ u) = sqrt( pi* 10^3 *4*pi* 10^-7 * 10^-4 )

          β = α = 6.3*10^-4 Np/m

          λ = 2*pi / β = 2*pi / 6.3*10^-4

          λ = 10 km

          up = λ*f = 10,000*1*10^3

          up = 0.1*10^8 m/s

          ηc = α*( 1 + j ) / б = 6.3*10^-4*( 1 + j ) / 10^-4

          ηc = 6.28*( 1 + j )

         

           

         

8 0
3 years ago
Other questions:
  • The water requirement for Class H cement is 38% (i.e.,water (%) by weight of cement),whereas the water requirement for barite is
    7·1 answer
  • Types of technology include:
    8·1 answer
  • Discuss the ethics of the circumstances that resulted in the Columbia shuttle disaster. Considering the predictions that were ma
    5·1 answer
  • Many of the products that we eat and drink are advanced manufactured products. Is this statement TRUE or FALSE?
    12·1 answer
  • Sarah and Raj take/takes me to a baseball game every year.
    11·1 answer
  • Solve the inequality below.Use the drop-down menus to describe the solution and its graph.
    12·1 answer
  • We have a tube with a diameter of 5 inches that is 1 foot long. The tube then reduces the diameter to 3 inches. According to the
    8·2 answers
  • Who wanna rp?????????????????????????!
    15·1 answer
  • Read the passage.
    9·1 answer
  • You have three gear wheels a, b and c connected to each other,if you turn the first gear wheel "a" clockwise what will happen to
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!