Explanation:
Sodium has atomic number of 11 and its electronic configuration is given by:
![[Na]=1s^22s^22p^63s^1](https://tex.z-dn.net/?f=%5BNa%5D%3D1s%5E22s%5E22p%5E63s%5E1)
The nearest stable electronic configuration to sodium is of the neon. So, in order to attain stability of noble gas it will loose its single electron.

![[Na^+]=1s^22s^22p^63s^0](https://tex.z-dn.net/?f=%5BNa%5E%2B%5D%3D1s%5E22s%5E22p%5E63s%5E0)
Sodium has single valency that is 1.
Let nbe the valency of the ion 'X'
By criss-cross method, the oxidation state of the ions gets exchanged and they form the subscripts of the other ions. This results in the formation of a neutral compound.

So, the formulas for all the possible compounds that sodium can form with the other ions will be:

Explanation:
A point of temperature at which both solid and liquid state of a substance remains in equilibrium without any change in temperature then this temperature is known as melting point.
For example, melting point of water is
. So, at this temperature solid state of water and liquid state are present in equilibrium with each other.
Therefore, when a 100 g of given pure metal in solid state is heated at its exact melting point which is
then some of the solid will change into liquid state but the temperature will remains the same.
Answer:
2L of nitrogen gas will be needed
Explanation:
Based on the following reaction:
N₂ + 3H₂ → 2NH₃
<em>1 mole of nitrogen reacts with 3 moles of hydrogen to produce 2 moles of ammonia.</em>
<em />
If 6L of hydrogen (In a gas, the volume is directly proportional to the moles, Avogadro's law) react, the volume of nitrogen gas required will be:
6L H₂ * (1mol N₂ / 3 moles H₂) =
<h3>2L of nitrogen gas will be needed</h3>
Answer:
A)The spring scale has a high level of precision and a low level of accuracy.
Explanation:
Hope it works for u guys