The linear velocity of a rotating object is the product of the angular velocity and the radius of the circular motion. Angular velocity is the rate of the change of angular displacement of a body that is in a circular motion. It is a vector quantity so it consists of a magnitude and direction. From the problem, the angular velocity is 5.9 rad per second and the radius is given as 12 centimeters. We calculate as follows:
Linear velocity = angular velocity (radius)
Linear velocity = 5.9 (12 ) = 70.8 cm / s
The linear velocity of the body in motion is 70.8 centimeters per second or 0.708 meters per second.
Answer:
2.86×10⁻¹⁸ seconds
Explanation:
Applying,
P = VI................ Equation 1
Where P = Power, V = Voltage, I = Current.
make I the subject of the equation
I = P/V................ Equation 2
From the question,
Given: P = 0.414 W, V = 1.50 V
Substitute into equation 2
I = 0.414/1.50
I = 0.276 A
Also,
Q = It............... Equation 3
Where Q = amount of charge, t = time
make t the subject of the equation
t = Q/I.................. Equation 4
From the question,
4.931020 electrons has a charge of (4.931020×1.6020×10⁻¹⁹) coulombs
Q = 7.899×10⁻¹⁹ C
Substitute these value into equation 4
t = 7.899×10⁻¹⁹/0.276
t = 2.86×10⁻¹⁸ seconds
Force = mass x acceleration
15 = mass x 4
Mass = 15/4
Mass = 3.75 Kg
Answer:
0 Newtons
Explanation:
The velocity of the object does not change, it is a constant 54 km/hr. When velocity does not change, acceleration is zero. Using the formula Force = mass x acceleration, we find:
mass = 1200 kg
acceleration = 0
F = (1200)(0) = 0
Answer:
Δ
= 84 Ω,
= (40 ± 8) 10¹ Ω
Explanation:
The formula for parallel equivalent resistance is
1 /
= ∑ 1 / Ri
In our case we use a resistance of each
R₁ = 500 ± 50 Ω
R₂ = 2000 ± 5%
This percentage equals
0.05 = ΔR₂ / R₂
ΔR₂ = 0.05 R₂
ΔR₂ = 0.05 2000 = 100 Ω
We write the resistance
R₂ = 2000 ± 100 Ω
We apply the initial formula
1 /
= 1 / R₁ + 1 / R₂
1 /
= 1/500 + 1/2000 = 0.0025
= 400 Ω
Let's look for the error (uncertainly) of Re
= R₁R₂ / (R₁ + R₂)
R’= R₁ + R₂
= R₁R₂ / R’
Let's look for the uncertainty of this equation
Δ
/
= ΔR₁ / R₁ + ΔR₂ / R₂ + ΔR’/ R’
The uncertainty of a sum is
ΔR’= ΔR₁ + ΔR₂
We substitute the values
Δ
/ 400 = 50/500 + 100/2000 + (50 +100) / (500 + 2000)
Δ
/ 400 = 0.1 + 0.05 + 0.06
Δ
= 0.21 400
Δ
= 84 Ω
Let's write the resistance value with the correct significant figures
= (40 ± 8) 10¹ Ω