Answer:
Final temperature = T₂ = 155.43 °C
Explanation:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Given data:
Mass of coin = 4.50 g
Heat absorbed = 54 cal
Initial temperature = 25 °C
Specific heat of copper = 0.092 cal/g °C
Final temperature = ?
Solution:
Q = m.c. ΔT
ΔT = T₂ -T₁
Q = m.c. T₂ -T₁
54 cal = 4.50 g × 0.092 cal/g °C × T₂ -25 °C
54 cal = 0.414 cal/ °C × T₂ -25 °C
54 cal /0.414 cal/ °C = T₂ -25 °C
130.43 °C = T₂ -25 °C
130.43 °C + 25 °C = T₂
155.43 °C = T₂
The water cycle regardless if it is in a lake, our bodies, food, or underground.
Answer:
Option C. Energy Profile D
Explanation:
Data obtained from the question include:
Enthalpy change ΔH = 89.4 KJ/mol.
Enthalpy change (ΔH) is simply defined as the difference between the heat of product (Hp) and the heat of reactant (Hr). Mathematically, it is expressed as:
Enthalpy change (ΔH) = Heat of product (Hp) – Heat of reactant (Hr)
ΔH = Hp – Hr
Note: If the enthalpy change (ΔH) is positive, it means that the product has a higher heat content than the reactant.
If the enthalpy change (ΔH) is negative, it means that the reactant has a higher heat content than the product.
Now, considering the question given, the enthalpy change (ΔH) is 89.4 KJ/mol and it is a positive number indicating that the heat content of the product is higher than the heat content of the reactant.
Therefore, Energy Profile D satisfy the enthalpy change (ΔH) for the formation of CS2 as it indicates that the heat content of product is higher than the heat content of the reactant.
Explanation:
I can't guess it properly