Answer:
The answer to your question is: letter A
Explanation:
a.Strong electrical forces will make ionic compounds have high boiling points. This option is correct because ionic bonds are strong which makes substances have high boiling points.
b.Strong electrical forces will make ionic compounds have weak bonds. This option is false, ionic compounds have strong bonds.
c.A low amount of energy is needed to break the bonds in ionic compounds. The high amount of energy is needed to break ionic bonds.
d.Gravitational forces hold the bonds together in ionic compounds. Gravitational forces do not affect the ionic compounds.
Answer:
(1) -12 Kcal/mol
Explanation:
Our answer options for this question are:
(1) -12 Kcal/mol
(2) -13 Kcal/mol
(3) -15 Kcal/mol
(4) -16 Kcal/mol
With this in mind, we can start with the chemical reaction (Figure 1). In this reaction, <u>two bonds are broken</u>, a C-H and a Br-Br. Additionally, a C-Br and a H-Br are <u>formed</u>.
If we want to calculate the enthalpy value, we can use the equation:
<u>ΔH=ΔHbonds broken-ΔHbonds formed</u>
If we use the energy values reported, its possible to calculate the energy for each set of bonds:
<u>ΔHbonds broken</u>
<u />
C-H = 94.5 Kcal/mol
Br-Br = 51.5 Kcal/mol
Therefore:
105 Kcal/mol + 53.5 Kcal/mol = 146 Kcal/mol
<u>ΔHbonds formed</u>
C-Br = 70.5 Kcal/mol
H-Br = 87.5 Kcal/mol
Therefore:
70.5 Kcal/mol + 87.5 Kcal/mol = 158 Kcal/mol
<u>ΔH of reaction</u>
<u />
ΔH=ΔHbonds broken-ΔHbonds formed=(146-158) Kcal/mol = -12 Kcal/mol
I hope it helps!
<u />
Explanation:
White precipitate of silver chloride get dissolves in excess ammonia to formation of complex between silver ions, chloride ions and ammonia molecules.
The chemical reaction is given as:
![AgCl(s)+2NH_3(aq)\rightarrow Ag[(NH_3)_2]^+Cl^-(aq)](https://tex.z-dn.net/?f=AgCl%28s%29%2B2NH_3%28aq%29%5Crightarrow%20Ag%5B%28NH_3%29_2%5D%5E%2BCl%5E-%28aq%29)
When 1 mole of silver chloride is added to 2 mole of an aqueous ammonia it form coordination complex of diaaminesilver(I) chloride.
Answer:
The pressure increases to 3.5 atm.
Solution:
According to Gay-Lussac's Law, " At constant volume and mass the pressure of gas is directly proportional to the applied temperature".
For initial and final states of a gas the equation is,
P₁ / T₁ = P₂ / T₂
Solving for P₂,
P₂ = P₁ T₂ / T₁ ----- (1)
Data Given;
P₁ = 3 atm
T₁ = 27 °C + 273 = 300 K
T₂ = 77 °C + 273 = 350 K
Putting values in eq. 1,
P₂ = (3 atm × 350 K) ÷ 300 K
P₂ = 3.5 atm