Answer:
Explanation:
The "traditional" form of Coulomb's law, explicitly the force between two point charges. To establish a similar relationship, you can use the integral form for a continuous charge distribution and calculate the field strength at a given point.
In the case of moving charges, we are in presence of a current, which generates magnetic effects that in turn exert force on moving charges, therefore, no longer can consider only the electrostatic force.
It is overhead at the equator, it is because the sun ray’s
will be moving vertically as this will be directed at the equator. It is
because if it moves vertically, it will hit or overhead the equator and this
usually happens in spring and fall.
The planet that Punch should travel to in order to weigh 118 lb is Pentune.
<h3 /><h3 /><h3>The given parameters:</h3>
- Weight of Punch on Earth = 236 lb
- Desired weight = 118 lb
The mass of Punch will be constant in every planet;
The acceleration due to gravity of each planet with respect to Earth is calculated by using the following relationship;
where;
- M is the mass of Earth = 5.972 x 10²⁴ kg
- R is the Radius of Earth = 6,371 km
For Planet Tehar;
For planet Loput:
For planet Cremury:
For Planet Suven:
For Planet Pentune;
For Planet Rams;
The weight Punch on Each Planet at a constant mass is calculated as follows;
Thus, the planet that Punch should travel to in order to weigh 118 lb is Pentune.
<u>The </u><u>complete question</u><u> is below</u>:
Which planet should Punch travel to if his goal is to weigh in at 118 lb? Refer to the table of planetary masses and radii given to determine your answer.
Punch Taut is a down-on-his-luck heavyweight boxer. One day, he steps on the bathroom scale and "weighs in" at 236 lb. Unhappy with his recent bouts, Punch decides to go to a different planet where he would weigh in at 118 lb so that he can compete with the bantamweights who are not allowed to exceed 118 lb. His plan is to travel to Xobing, a newly discovered star with a planetary system. Here is a table listing the planets in that system (<em>find the image attached</em>).
<em>In the table, the mass and the radius of each planet are given in terms of the corresponding properties of the earth. For instance, Tehar has a mass equal to 2.1 earth masses and a radius equal to 0.80 earth radii.</em>
Learn more about effect of gravity on weight here: brainly.com/question/3908593
To solve this problem, we must remember about the law of
conservation of momentum. The initial momentum mist be equal to the final
momentum, that is:
m1 v1 + m2 v2 = (m1 + m2) v’
where v’ is the speed of impact
Since we are not given the masses of each car m1 and m2,
so let us assume that they are equal, such that:
m1 = m2 = m
Which makes the equation:
m v1 + m v2 = (2 m) v’
Cancelling m and substituting the v values:
50 + 48 = 2 v’
2 v’ = 98
v ‘ = 49 km/h
<span>The speed of impact is 49 km/h.</span>