1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
eimsori [14]
3 years ago
14

If the diameter of a radar dish is doubled, what happens to its resolving power assuming that all other factors remain unchanged

?
Physics
1 answer:
kirill115 [55]3 years ago
8 0

Answer:

      θ’ = θ₀ / 2

we see that the resolution angle is reduced by half

Explanation:

The resolving power of a radar is given by diffraction, for which we will use the Rayleigh criterion for the resolution of two point sources, they are considered resolved if the maximum of diffraction of one coincides with the first minimum of the other.

The first minimum occurs for m = 1, so the diffraction equation of a slit remains

        a sin θ = λ

in general, the diffraction patterns occur at very small angles, so

        sin θ = θ

          θ = λ / a

in the case of radar we have a circular aperture and the equation must be solved in polar coordinates, which introduces a numerical constant.

        θ = 1.22 λ /a

In this exercise we are told that the opening changes

         a’ = 2 a

we substitute

          θ ‘= 1.22  λ / 2a

          θ' = (1.22 λ / a) 1/2

          θ’ = θ₀ / 2

we see that the resolution angle is reduced by half

You might be interested in
03: A mass with a 60 g vibrate at the end of a spring. The amplitude of the motion is 0.394 ft
Flauer [41]

Answer:

a) T = 1.69 s, b)  k = 0.825 N / m, c)  v = 1.46 feet/s, d) a = 5.41 ft / s²,

e)   v = - 1,319 ft / s,    a = - 2.70 ft / s², f) K = 4.8 10⁻³ J, U = 1.49 10⁻³ J

Explanation:

In a mass-spring system with simple harmonic motion, the angular velocity is

         w = \sqrt{\frac{k}{m} }

a) find the period

angular velocity, frequency, and period are related

         w = 2π f = 2π / T

          f = 1 / T

          T = 1 / f

           T = 1 / 0.59

           T = 1.69 s

b) the spring constant

         w = 2π f

         w = 2π 0.59

         w = 3.70 rad / s

         w² = k / m

          k = w² m

          k = 3.70² 0.060

          k = 0.825 N / m

c) the maximum speed

simple harmonic movement is described by the expression

          x = A cos (wt + Ф)

speed is defined by

         v =\frac{dx}{dt}

          v = -A w sin (wt + fi)

the speed is maximum when the cosine is ± 1

          v = A w

          v = 0.394 3.70

          v = 1.46 feet/s

d) maximum acceleration

            a = \frac{dv}{dt}

            a = - A w² cos wt + fi

the acceleration is maximum when the cosine is ±1

            a = A w²

            a = 0.394 3.70²

            a = 5.41 ft / s²

e) velocity and acceleration for x = 6 cm

let's reduce the cm to feet

            x = 6 cm (1 foot / 30.48 cm) = 0.1969 foot

Before doing this part we must find the phase angle (Ф), the most common way to start the movement is to move the spring a small distance and release it, so its initial speed is zero for t = 0 s

let's use the expression for the velocity

           v = -A w sin (0 + Фi)

           0 = - A w sin Ф

so sin Ф = 0 which implies that Фi = 0

the equation of motion is

            x = A cos wt

            x = 0.394 cos 3.70t

we substitute

           0.1969 = 0.394 cos 370t

           3.70 t = cos⁻¹ (0.1969 / 0.394)

let's not forget that the angle is in radians

           3.70, t = 1.047

           t = 1.047 / 3.70

           t = 0.2826 s

we substitute this time in the equation for velocity and acceleration

           v = - Aw sin wt

           v = - 0.394 3.70 sin 3.70 0.2826

           v = - 1,319 ft / s

           a = - A w² cos wt

           a = - 0.394 3.70² cos 3.70 0.2826

           a = - 2.70 ft / s²

f) the kinetic and potential energy at this point

           K = ½ m v²

let's slow down to the SI system

           v = 1.319 ft / s (1 m / 3.28 ft) = 0.402 m / s

           

           K = ½ 0.060 0.402²

           K = 4.8 10⁻³ J

           U = ½ k x²

           U = ½ 0.825 0.06²

           U = 1.49 10⁻³ J

5 0
2 years ago
What is the purpose of a kink in a thermometer?
AnnZ [28]

Answer:

A 'kink' in the glass tube which breaks the mercury as it contracts, storing the highest temperature reading. The glass tube is shaped like a lens to magnify the thin mercury thread. Shaking the thermometer resets the mercury back into the bulb.

3 0
2 years ago
Read 2 more answers
A heat engine with a thermal efficiency of 45 percent rejects 500 kj/kg of heat. how much heat does it receive
adell [148]
Alot as far as i know unless you need it in formal terms.
8 0
3 years ago
An explorer is caught in a whiteout (in which the snowfall is so thick that the ground cannot be distinguished from the sky) whi
Brrunno [24]

Answer:

The explorer should travel to reach base camp to 5.02 Km at 4.28° south of due west.

Explanation:

Using trigonometric function like Sen(Ф), Cos(Ф) and Tan(Ф) we can get distance and direction that the explorer should travel to reach base camp. When we discompound the vector X = 7.8*Cos(50) = 5.01 Km y y = 7.8 * Sen (50) - 5.6 = 5.975 - 5.6 (Km) = 0.375 (Km) so that Tan (\alpha ) = \frac{0.375}{5.01} = 4.28; \alpha = Arctang (\frac{0.375}{5.01}) = 4.28 (degree) to get how far we use Pythagorean theorem so R^{2} = x^{2}+y^{2} so that R=\sqrt{0.375^{2}+5.01^{2} } =5.02 (Km)

6 0
3 years ago
Read 2 more answers
A solid brass cylinder and a solid wood cylinder have the same radius and mass (the wood cylinder is longer). Released together
Lena [83]

Answer:

a. They will be tie

b. Win the wood cylinder

Explanation:

a.

The both cylinders will reach the bottom at the same time notice the relation in the equation in indepent of the length and both have the same radius and the same rotational inertia.

I=\frac{1}{2}*m*r^2

a=\frac{g*sin(\beta)}{1+I_{com}/m*r^2}

So both will be tie

b.

a_{brass}=\frac{g*sin(\beta)}{1+I_{brass}/m*r^2}=a_{wood}=\frac{g*sin(\beta)}{1+I_{wood}/m*r^2}

The acceleration of the wood cylinder is larger than the acceleration of the brass cylinder so the cylinder of wood will reach the bottom first

a_{brass}

So the wood win the race

6 0
2 years ago
Other questions:
  • A 236 g cart moves on a horizontal, frictionless surface with a constant speed of 26.9 cm/s. A 66.1 g piece of modeling clay is
    15·1 answer
  • While punting a football, a kicker rotates his leg about the hip joint. the moment of inertia of the leg is 3.75 kg m2 and its r
    13·2 answers
  • If a car accelerates at a constant rate of 3m/s^2, what is the velocity of the car after 4 seconds
    11·2 answers
  • Mary and Jim find an unusual rock in their backyard. Which question about the rock cannot be answered through scientific investi
    15·2 answers
  • Use what you know about mass and how you use it to calculate force in the following situation. If each washer has a mass of 4.9
    15·2 answers
  • How many layers of data can a DVD store?<br> 3<br> 2<br> 4<br> 1<br> 1
    9·1 answer
  • Which image shows an inclined plane?
    7·2 answers
  • Unless indicated otherwise, assume the speed of sound in air to be v = 344 m/s. A pipe closed at both ends can have standing wav
    11·1 answer
  • VISUAL 2 GAS LAWS
    8·1 answer
  • Ancient Greek philosophers were the first to discuss atoms and matter. This became known in time as____________. Atomic theory s
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!