30 is the correct answer your looking for
She puts each block of ice in the same 3000 mL beaker, each with 2000 mL of water at room temperature, and measures the temperature before and after adding ice. Therefore, small blocks of ice will have the same temperature.
Joanna puts two blocks of ice (one larger than the other) into separate cups and fills each with water. She compares the final water temperature of the two cups after each block of ice melts.
Put each block of ice in the same 3000 mL beaker, each at room temperature, put 2000 mL of water in it, and measure the temperature before and after adding ice. This way you keep the water at the same temperature in the beginning, then the temperature changes after you add the ice, giving you a better idea of the final temperature reading.
Learn more about Temperature here brainly.com/question/24746268
#SPJ9
Answer : The cell potential for this cell 0.434 V
Solution :
The balanced cell reaction will be,

Here copper (Cu) undergoes oxidation by loss of electrons, thus act as anode. silver (Ag) undergoes reduction by gain of electrons and thus act as cathode.
First we have to calculate the standard electrode potential of the cell.
![E^o_{[Cu^{2+}/Cu]}=0.34V](https://tex.z-dn.net/?f=E%5Eo_%7B%5BCu%5E%7B2%2B%7D%2FCu%5D%7D%3D0.34V)
![E^o_{[Ag^{+}/Ag]}=0.80V](https://tex.z-dn.net/?f=E%5Eo_%7B%5BAg%5E%7B%2B%7D%2FAg%5D%7D%3D0.80V)
![E^o=E^o_{[Ag^{+}/Ag]}-E^o_{[Cu^{2+}/Cu]}](https://tex.z-dn.net/?f=E%5Eo%3DE%5Eo_%7B%5BAg%5E%7B%2B%7D%2FAg%5D%7D-E%5Eo_%7B%5BCu%5E%7B2%2B%7D%2FCu%5D%7D)

Now we have to calculate the concentration of cell potential for this cell.
Using Nernest equation :
![E_{cell}=E^o_{cell}-\frac{0.0592}{n}\log \frac{[Cu^{2+}][Ag]^2}{[Cu][Ag^+]^2}](https://tex.z-dn.net/?f=E_%7Bcell%7D%3DE%5Eo_%7Bcell%7D-%5Cfrac%7B0.0592%7D%7Bn%7D%5Clog%20%5Cfrac%7B%5BCu%5E%7B2%2B%7D%5D%5BAg%5D%5E2%7D%7B%5BCu%5D%5BAg%5E%2B%5D%5E2%7D)
where,
n = number of electrons in oxidation-reduction reaction = 2
= ?
Now put all the given values in the above equation, we get:


Therefore, the cell potential for this cell 0.434 V
Answer:
Friction of the road on the motorcycle in the opposite direction
Explanation:
Khanacademy