<span>From the point of view of the astronaut, he travels between planets with a speed of 0.6c. His distance between the planets is less than the other bodies around him and so by applying Lorentz factor, we have 2*</span>√1-0.6² = 1.6 light hours. On the other hand, from the point of view of the other bodies, time for them is slower. For the bodies, they have to wait for about 1/0.6 = 1.67 light hours while for him it is 1/(0.8) = 1.25 light hours. The remaining distance for the astronaut would be 1.67 - 1.25 = 0.42 light hours. And then, light travels in all frames and so the astronaut will see that the flash from the second planet after 0.42 light hours and from the 1.25 light hours is, 1.25 - 0.42 = 0.83 light hours or 49.8 minutes.
The inner planets are not colder or larger than the outer ones,
and they're not comprised of gas.
The inner planets are the ones that are made of rock. ( D ).
Answer:
The distance represents the difference of the first position and last position of the body.
Explanation:
For example, if y axis represents the position axis, and the first position is 3, second 9 we can see that the distance is a (positive) projection of one position into another. 9-3=6
Hope this helps.
False ,it does not only associate with motion of object