Characteristics help us to classify seeds because different plants have different features.
<h3>How are characteristics used to identify and classify plants?</h3>
The divisions classify plants that are based on whether they reproduce by spores or seeds. Spore-bearing plants include ferns, club mosses, and horsetail while on the other hand, Seed-bearing plants are divided into gymnosperms and angiosperms. Different plants have different characteristics and features so on the basis of these characteristics we can easily classify seeds whether they belong from angiosperm and gymnosperm.
So we can conclude that characteristics help us to classify seeds because different plants have different features.
Learn more about seeds here: brainly.com/question/18799172
#SPJ1
Answer:
Option (B)
Explanation:
In terms of communication, a receiver is usually referred to as a person who listens, reads as well as observes. In simple words, a receiver is an individual or it can be a group of individuals, to whom any type of message is being diverted. The other name for the receiver is 'audience'.
In the given condition, Warren is attending a seminar in which he is listening to the speaker, as a part of the audience. So, it can be concluded that Warren is a receiver who is receiving information or hearing the speaker.
Thus, the correct answer is option (B).
Answer:
a)
, b) 
Explanation:
The magnitude of torque is a form of moment, that is, a product of force and lever arm (distance), and force is the product of mass and acceleration for rotating systems with constant mass. That is:



Where
is the angular acceleration, which is constant as torque is constant. Angular deceleration experimented by the unpowered flywheel is:


Now, angular velocities of the unpowered flywheel at 50 seconds and 100 seconds are, respectively:
a) t = 50 s.


b) t = 100 s.
Given that friction is of reactive nature. Frictional torque works on the unpowered flywheel until angular velocity is reduced to zero, whose instant is:


Since
, then the angular velocity is equal to zero. Therefore:

Answer:
b. they get blown in from colder or warmer areas.
Answer:
5.7141 m
Explanation:
Here the potential and kinetic energy will balance each other

This is the initial velocity of the system and the final velocity is 0
t = Time taken = 0.04 seconds
F = Force = 18000 N
a = Acceleration
g = Acceleration due to gravity = 9.81 m/s²
Equation of motion

From Newton's second law

Squarring both sides

The height from which the student fell is 5.7141 m