Answer:
20N
Explanation:
Ratio of N to cm-
10:2
so to make 2=4 times 2 so The ratio is now-
20:4
so to move 4 cm you need to push 20N.
Answer:
25 m/s
Explanation:
from the question you van see that some detail is missing, however i found this same question using internet search engines on: 'https://www.chegg.com/homework-help/questions-and-answers/light-rail-passenger-trains-provide-transportation-within-cities-speed-slow-nearly-constan-q5808369'
here is the complete question:
'Light-rail passenger trains that provide transportation within and between cities speed up and slow down with a nearly constant (and quite modest) acceleration. A train travels through a congested part of town at 7.0m/s . Once free of this area, it speeds up to 12m/s in 8.0 s. At the edge of town, the driver again accelerates, with the same acceleration, for another 16 s to reach a higher cruising speed. What is the final Speed?'
SOLUTION
initial speed (u) = 7 m/s
final speed (v) = 13 m/s
initial acceleration time (t1) = 8 s
final acceleration time (t2) = 16 s
what is the higher cruising speed?
acceleration = 
acceleration =
= 0.75 m/s^{2}
since the train accelerates at the same rate, the increase in speed will be = acceleration x time (t2)
= 0.75 x 16 = 12 m/s
therefore the higher cruising speed = increase in speed + initial speed
= 12 + 13 = 25 m/s
Acceleration = (change in speed) / (time for the change)
- 4.1 m/s² = (-9 m/s) / (time for the change)
Time for the change = (-9 m/s) / (-4.1 m/s²) = 2.2 seconds
Answer:
V₂ = -22 V
Explanation:
Electric potential and field are related
ΔV = - E d
where ΔV is the potential difference between the plates, E the electric field and d the separation between the plates
In this exercise we are given the parcionero d = 4 mm = 0.004 m, the potential of one of the plates V1 = -6V and the value of the electric field E = 4000 V / m
V₂- V₁ = - E d
V₂ = - Ed + V₁
V₂ = - 4000 0.004 + (- 6)
V₂ = -16 - 6
V₂ = -22 V