Distance , d = a+b

The unit of d is in meter and t is in seconds.
So the unit of a a must be meter.
Now we have unit of b

is meter.
So unit of b*

= meter
Unit of b = meter/

So unit of a = m and unit of b = m/

.
When an atom becomes electrically charged the number of electrons or protons stops and they are not equal again. The "extra" electron or proton is not balanced by something inside the atom any longer and it starts attracting itself to othet protons or electrons in other atoms.
<h3>What is atomic structure?</h3>
An atomic structure comprises of positively charged nucleus which is surrounded by negatively charged particles called electron and neutron which is neutral charged.
Unlike charges attract each other while like charges repel each other.
Therefore, When an electron is fully charged, the number of electrons will stop to be unequal again.
Learn more about Atomic charge here.
brainly.com/question/18102056
Answer:
I think it is 5.6. This is my answer
The height of the object will be -5.19 cm
A concave mirror's reflecting surface curves inward and away from the light source. Light is reflected inward to a single focus point via concave mirrors. Concave mirrors, in contrast to convex mirrors, produce a variety of images depending on the object's to the mirror.
Given an object 24.0 cm from a concave mirror creates a virtual image at -33.5 cm. if the image is 7.25 cm tall
So let,
v = Image distance from the mirror = -33.5 cm
u = object distance from the mirror (concave) = 24 cm
hi = Image height = 7.25 cm
h = height of the object = ?
Using below formula to find height of the object
-v/u = hi/h
Putting all value in the formula we get
-(-33.5)/(-24) = 7.25/h
h = -5.19 cm
Therefore the height of the object will be -5.19 cm
Learn more about Concave mirror here:
brainly.com/question/3727024
#SPJ10
To solve this problem it is necessary to consider two concepts. The first of these is the flow rate that can be defined as the volumetric quantity that a channel travels in a given time. The flow rate can also be calculated from the Area and speed, that is,
Q = V*A
Where,
A= Cross-sectional Area
V = Velocity
The second concept related to the calculation of this problem is continuity, which is defined as the proportion that exists between the input channel and the output channel. It is understood as well as the geometric section of entry and exit, defined as,


Our values are given as,


Re-arrange the equation to find the first ratio of rates we have:



The second ratio of rates is


