1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alchen [17]
3 years ago
12

What's the definition of altitude?

Physics
2 answers:
OleMash [197]3 years ago
6 0
Altitude is the height of something or the point of sea level or ground level.
hope i helped!!
marysya [2.9K]3 years ago
3 0
  <span>the height of an object or point in relation to sea level or ground level.<span>"flight data including airspeed and altitude"</span><span>synonyms: height<span><span>, elevation</span><span>, </span>distance above the sea/ground; <span><span>loftiness </span><span>"clouds are classified according to form and altitude"</span></span></span></span></span>great height.
or <span>the mechanism can freeze at altitud</span>e

You might be interested in
Arrange the distances between Earth and various celestial objects in order from least to greatest. Use the conversion table to h
Kaylis [27]

distance to the star Betelgeuse: 640 ly

As we know that

1 ly = 63000 AU

also we know that

1AU = 1.5 \times 10^8 km

1 ly = 63000 (1.5 \times 10^8) = 9.45 \times 10^{12} km

So the distance of Betelgeuse = 640 ly

d_1 = 640 \times 9.45 \times 10^{12} = 6.05 \times 10^{15} m

distance to the star VY Canis Majoris: 3.09 × 10^8 AU

d_2 = 3.09\times 10^8 \times 1.5 \times 10^8 km

d_2 = 4.64 \times 10^{16} km

distance to the galaxy Large Magellanic Cloud: 49976 pc

1 pc = 3.262 ly = 3.262 \times 9.45 \times 10^{12} km

1pc = 3.08 \times 10^{13} km

now we have

d_3 = 49976 \times 3.08 \times 10^{13}

d_3 = 1.54 \times 10^{18} km

distance to Neptune at the farthest: 4.7 billion km

d_4 = 4.7 \times 10^9 km

now the order of distance from least to greatest is as following

1. distance to Neptune at the farthest

2. distance of Betelgeuse

3. distance to the star VY Canis Majoris

4. distance to the galaxy Large Magellanic Cloud

6 0
3 years ago
An ideal monatomic gas at 275 K expands adiabatically and reversibly to six times its volume. What is its final temperature (in
Gwar [14]

The final temperature is 83 K.

<u>Explanation</u>:

For an adiabatic process,

T {V}^{\gamma - 1} = \text{constant}

\cfrac{{T}_{2}}{{T}_{1}} = {\left( \cfrac{{V}_{1}}{{V}_{2}} \right)}^{\gamma - 1}

Given:-

{T}_{1} = 275 \; K  

{T}_{2} = T \left( \text{say} \right)

{V}_{1}  = V

{V}_{2} = 6V

\gamma = \cfrac{5}{3} \;    (the gas is monoatomic)

\therefore \cfrac{T}{275} = {\left( \cfrac{V}{6V} \right)}^{\frac{5}{3} - 1}

 

\Rightarrow \cfrac{T}{275} = {\left( \cfrac{1}{6} \right)}^{\frac{2}{3}}  

T  =  275 \times 0.30

T  =  83 K.

3 0
3 years ago
Which is the MOST accurate statement about the heating curve and energy?
V125BC [204]

The answer is A). Moving from A to C the temperature and the kinetic energy increases.

3 0
3 years ago
Read 2 more answers
During World War I, the Germans had a gun called Big Bertha that was used to shell Paris. The shell had an initial speed of 2.61
bonufazy [111]

Answer:

The shell hit at a distance of 1.9 x 10² km

The time of flight of the shell was 5.3 x 10² s

Explanation:

The position of the shell is given by the vector "r":

r  = (x0 + v0 * t * cos α ; y0 + v0 * t * sin α + 1/2 g t²)

where:

x0 = initial horizontal position

v0 = magnitude of the initial velocity

t = time

α = launching angle

y0 = initial vertical position

g = acceleration of gravity

When the shell hit, the vertical component (ry) of the vector position r is 0. See figure.

Then:

ry = 0 =  y0 + v0 * t * sin α + 1/2 g t²

Since the gun is at the center of our system of reference, y0 and x0 = 0

0 = t (v0 sin α + 1/2 g t)

t= 0 is discarded as solution

v0 sin α + 1/2 g t = 0

t = -2v0 sin α / g

t = (-2 * 2610 m/s * sin 81.9°)/ (-9.8 m/s²) = 5.3 x 10² s. This is the time of flight of the shell until it hit.

Then, the distance at which the shell hit is:

Distance = Module of r = ( x0 + v0 * t * cos α; 0) = x0 + v0 * t * cos α  

Distance = 2.61 km/s * 5.3 x 10² s * cos 81.9 = 1.9 x 10² km

7 0
3 years ago
What is the net force acting upon this object? *
AnnZ [28]

2 N Right

.. .. .. .. .. .. .. ..

4 0
3 years ago
Read 2 more answers
Other questions:
  • Suppose we could shrink the earth without changing its mass..?At what fraction of its current radius would the free-fall acceler
    10·2 answers
  • Why earth have gravity?
    7·1 answer
  • A 50-kilogram student is running and has 225 joules of kinetic energy.What is the students speed in meters per second
    11·2 answers
  • What are the two ways to determine the negative leg of an LED?
    15·1 answer
  • Which set of ordered pairs represents a function?
    9·2 answers
  • ____is the distance traveled during a specific unit of time
    7·1 answer
  • Suppose the tank is open to the atmosphere instead of being closed. how does the pressure vary along
    13·1 answer
  • The size, shape, and color of an object would be an example of a
    9·1 answer
  • 1. What is the difference between the two divisions of the skeletal system?
    14·1 answer
  • When 6a of ac current at 114 v flows in the primary coil of an ideal transformer, how many amps at 29 v wul flow in the secondar
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!