The sunlight of all colors passes through air, the blue part causes charged particles to oscillate faster than does the red part. More of the sunlight entering the atmosphere is blue than violet, however, and our eyes are somewhat more sensitive to blue light than to violet light, so the sky appears blue.
That would be an asteroid
The car travels at a speed of 25m/s.
<u>Explanation:</u>
Given-
Mass, m = 1500kg
Coefficient of friction, μk = 0.47
Distance, x = 68m
Speed, s = ?
We know,

and
F = μ X m X g
Therefore,
μ * m * g = m * a
μ * g = a
Let, g = 9.8m/s²
So,


We know,

where, v is the final velocity
u is the initial velocity
a is the acceleration
s is the distance
If the car comes to rest, the final velocity, v becomes 0.
So,

The car travels at a speed of 25m/s.
Answer:19.32 m/s
Explanation:
Given
initial speed of car(u)=4.92 m/s
acceleration(a)=
Speed of car after 4.5 s
using equation of motion
v=u+at

v=19.32 m/s
Displacement of the car after 4.5 s



s=54.54 m
Answer:
x = 6.94 m
Explanation:
For this exercise we can find the speed at the bottom of the ramp using energy conservation
Starting point. Higher
Em₀ = K + U = ½ m v₀² + m g h
Final point. Lower
= K = ½ m v²
Em₀ = Em_{f}
½ m v₀² + m g h = ½ m v²
v² = v₀² + 2 g h
Let's calculate
v = √(1.23² + 2 9.8 1.69)
v = 5.89 m / s
In the horizontal part we can use the relationship between work and the variation of kinetic energy
W = ΔK
-fr x = 0- ½ m v²
Newton's second law
N- W = 0
The equation for the friction is
fr = μ N
fr = μ m g
We replace
μ m g x = ½ m v²
x = v² / 2μ g
Let's calculate
x = 5.89² / (2 0.255 9.8)
x = 6.94 m