Answer:
Since they're easy to separate, covalent compounds have low melting and boiling points. 2) Covalent compounds are soft and squishy (compared to ionic compounds, anyway). The reason for this is similar to the reason that covalent compounds have low melting and boiling points. When you hit an ionic compound with something, it feels very hard
Explanation:
mark brainliest plz
Answer:
a) decrease, gas
b) increase, gas
c) liquid
d) increase, solid
Explanation:
Entropy refers to the degree of disorderliness of a system. If the number of moles of gas increases from left to right in a reaction, the entropy of the system increases positively.
Similarly, when the number of liquid molecules remain constant, there could only be a very little increase in entropy.
However, solids have the least entropy and the entropy of a system decreases when a system yields solid products.
I know what you're asking but I don't think the question is stated properly. Technically, an atom will not join with an "oxide" ion; i.e., the oxide ion is an atom of oxygen to which two electrons have been added. An oxide ion will add to 2 K ions or 1 Ca ion. The K ion has lost just one electron so it takes two of them to equal the 2- charge on the oxide ion whereas the Ca ion has lost two electrons and it takes only one of them to equal the charge on the oxide ion.
Answer:
There are 10.0 moles of beryllium oxide in a 250 grams sample of the compound.
Explanation:
We can calculate the number of moles (η) of BeO as follows:

Where:
m: is the mass = 250 g
M: is the molar mass = 25.0116 g/mol
Hence, the number of moles is:

Therefore, there are 10.0 moles of beryllium oxide in a 250 grams sample of the compound.
I hope it helps you!
Answer: it would be 0.026 moles
Explanation: PV=nRT, P is the pressure of gas, V is the volume it occupies n is the number of moles of gas present in the sample, R is the universal gas constant which is equal to 0.0821 atm L/mol K and T is the absolute temperature of the gas