The answer you are looking for is A. If you need me to show you how I got the answer let me know. :)
Answer:
1. went on the first manned launch during the Apollo mission
2. responsible for all spacecraft systems
3. 4500 hour
4. published All-American Boys
5. Joined back in space organization as a consultant to inspire next generation for mars
Answer:

Explanation:
Hello!
In this case, since the net ionic equation of a chemical reaction shows up the ionic species that result from the simplification of the spectator ions, which are those at both reactants and products sides, we take into account that aqueous species ionize into ions whereas liquid, solid and gas species remain unionized. In such a way, for the reaction of cesium phosphate and silver nitrate we can write the complete molecular equation:

Whereas the three aqueous salts are ionized in order to write the following complete ionic equation:

In such a way, since the cesium and nitrate ions are the spectator ions because of the aforementioned, the net ionic equation turns out:

Best regards!
Answer:
1: At temperatures below 542.55 K
2: At temperatures above 660 K
Explanation:
Hello there!
In this case, according to the thermodynamic definition of the Gibbs free energy, it is possible to write the following expression:

Whereas ΔG=0 for the spontaneous transition. In such a way, we proceed as follows:
1:

It means that at temperatures lower than 542.55 K the reaction will be spontaneous.
2:

It means that at temperatures higher than 660 K the reaction will be spontaneous.
Best regards!
Almost all properties are common to elements within a single group on the periodic table. They react with water in the same way, they have the same number of valence electrons thereby having the same valency, the number of shells in the atom of the element increases by one as we move down the group.
In general, they have the same chemical properties as chemical properties depend on the number of electrons in the valence shell i.e. the outermost shell in the atom of an element.