Number of moles of CO2 =
Mass /Ar
= 50.2 / (12 + 32)
1.14 mols
For every 1 mol of gas, there will be
24000 cm^3 of gas
Vol. = 1.14 x 24 dm^3
= 27.36 dm^3
Answer:
15. 2.66 moles .
16. 2.09L.
Explanation:
Molarity of a solution is simply defined as the mole of solute per unit litre of the solvent. Mathematically, it is represented as:
Molarity = mole /Volume.
With the above formula, let us answer the questions given above
15. Data obtained from the question include the following:
Volume of solution = 1.4L
Molarity = 1.9M
Mole of solute =.?
Molarity = mole /Volume
1.9 = mole / 1.4
Cross multiply
Mole = 1.9 x 1.4
Mole = 2.66 moles
Therefore, the mole of the solute present in the solution is 2.66 moles.
16. Data obtained from the question include the following:
Mole of solute = 0.46 mole
Molarity = 0.22M
Volume of solvent (water) =.?
Molarity = mole /Volume
0.22 = 0.46/Volume
Cross multiply
0.22 x Volume = 0.46
Divide both side 0.22
Volume = 0.46/0.22
Volume = 2.09L
Therefore, 2.09L of water is required.
Answer:
you tilt the cylinder at a slight angle so that the metal slides down the sides, rather than drops all it`s weight to the bottom
The empirical formula of the following compounds 0.903 g of phosphorus combined with 6.99 g of bromine.
<h3>What is empirical formula?</h3>
The simplest whole number ratio of atoms in a compound is the empirical formula of a chemical compound in chemistry. Sulfur monoxide's empirical formula, SO, and disulfur dioxide's empirical formula, S2O2, are two straightforward examples of this idea. As a result, both the sulfur and oxygen compounds sulfur monoxide and disulfur dioxide have the same empirical formula.
<h3>
How to find the empirical formula?</h3>
Convert the given masses of phosphorus and bromine into moles by multiplying the reciprocal of their molar masses. The molar masses of phosphorus and bromine are 30.97 and 79.90 g/mol, respectively.
Moles phosphorus = 0.903 g phosphorus
= 0.0293 mol
Moles bromine 6.99 g bromine
=0.0875 mol
The preliminary formula for compound is P0.0293Bro.0875. Divide all the subscripts by the subscript with the smallest value which is 0.0293. The empirical formula is P1.00Br2.99 ≈ P₁Br3 or PBr3
To learn more about empirical formula visit:
brainly.com/question/14044066
#SPJ4
Answer:

Explanation:
We will need a balanced equation with masses, moles, and molar masses, so let’s gather all the information in one place.
Mᵣ: 44.01
C₃H₈ + 5O₂ ⟶ 3CO₂ + 4H₂O
n/mol: 1.5
1. Calculate the moles of CO₂
The molar ratio is 3 mol CO₂:1 mol C₃H₈

2. Calculate the mass of CO₂.
