The required mole ratio of NH₃ to N₂ in the given chemical reaction is 2:4.
<h3>What is the stoichiometry?</h3>
Stoichiometry of the reaction gives idea about the number of entities present on the reaction before and after the reaction.
Given chemical reaction is:
4NH₃ + 3O₂ → 2N₂ + 6H₂O
From the stoichiometry of the reaction it is clear that:
4 moles of NH₃ = produces 2 moles of N₂
Mole ratio NH₃ to N₂ is 2:4.
Hence required mole ratio is 2:4.
To know more about mole ratio, visit the below link:
brainly.com/question/504601
Answer:
um, not sure how to answer this haha
Explanation:
Answer:
Some metals can be extracted from compounds by heating with carbon atom because they are less reactive than carbon and some metals cannot be extracted because they are more reactive than carbon atom.
Explanation: If the metal is less reactive than carbon atom so the carbon atoms make bond with oxide or other atom present with metal and the metal is free from that oxide or that element. But if the reactivity of metal is higher than carbon is unable to remove the oxide or element.
The full chemical symbol for an element<span> shows its mass </span>number<span> at the top, and its atomic </span><span>number at the bottom</span>
<h3><u>Answer;</u></h3>
= 3032.15 kPa
<h3><u>Explanation;</u></h3>
Using the equation;
PV = nRT , where P is the pressure,. V is the volume, n is the number of moles and T is the temperature and R is the gas constant, 0.08206 L. atm. mol−1.
Volume = 7.5 L, T = 274 +273 = 547 K, N = 5 moles
Therefore;
Pressure = nRT/V
= (5 × 0.08206 × 547)/7.5 L
= 29.925 atm
But; 1 atm = 101325 pascals
Hence; Pressure = 3032150.63 pascals
<u>= 3032.15 kPa</u>