Answer:
water
Explanation:
Because it does not have more than one component.
<span>Take the inversion of density: 1mL/13.6 g and multiply it by the conversion factor 453.6 g/ 1 lb and the given 5.00 lb. Units for mass (grams) and units for weight (lbs) cancel leaving only units of volume. I believe it should be 167 mL or 0.167 L</span>
The first dissociation for H2X:
H2X +H2O ↔ HX + H3O
initial 0.15 0 0
change -X +X +X
at equlibrium 0.15-X X X
because Ka1 is small we can assume neglect x in H2X concentration
Ka1 = [HX][H3O]/[H2X]
4.5x10^-6 =( X )(X) / (0.15)
X = √(4.5x10^-6*0.15)
∴X = 8.2 x 10-4 m
∴[HX] & [H3O] = 8.2x10^-4
the second dissociation of H2X
HX + H2O↔ X^2 + H3O
8.2x10^-4 Y 8.2x10^-4
Ka2 for Hx = 1.2x10^-11
Ka2 = [X2][H3O]/[HX]
1.2x10^-11= y (8.2x10^-4)*(8.2x10^-4)
∴y = 1.78x10^-5
∴[X^2] = 1.78x10^-5 m
Answer:
0.153M
Explanation:
57.3/97.994 (molar mass)=0.585 moles of H3PO4
.0585/3.820L=0.153M
Answer:
N2(g) + 3H2(g) → 2 NH3(g)
Explanation:
N2(g) + H2(g) → NH3(g)
We start equaling the number of N atoms in both sides multiplying by 2 the NH3.
N2(g) + H2(g) → 2 NH3(g)
So we equals the H atoms (there are six in products sites)
N2(g) + 3 H2(g) → 2 NH3(g)