Answer:
0.169
Explanation:
Let's consider the following reaction.
A(g) + 2B(g) ⇄ C(g) + D(g)
We can find the pressures at equilibrium using an ICE chart.
A(g) + 2 B(g) ⇄ C(g) + D(g)
I 1.00 1.00 0 0
C -x -2x +x +x
E 1.00-x 1.00-2x x x
The pressure at equilibrium of C is 0.211 atm, so x = 0.211.
The pressures at equilibrium are:
pA = 1.00-x = 1.00-0.211 = 0.789 atm
pB = 1.00-2x = 1.00-2(0.211) = 0.578 atm
pC = x = 0.211 atm
pD = x = 0.211 atm
The pressure equilibrium constant (Kp) is:
Kp = pC × pD / pA × pB²
Kp = 0.211 × 0.211 / 0.789 × 0.578²
Kp = 0.169
The genetic combination of two alles
Your answer is probably
Vaporization point
Answer:
It depends on their melting and/or their boiling points, because the heat provides the particles with kinetic energy to break the electrosatic bonds in the substances, which can differ in strength
Explanation:
The full question is shown in the image attached
Answer:
See explanation
Explanation:
In naming an alkane, the first thing we do is to obtain the parent chain by counting the number of carbon atoms in the chain.
When we obtain that, then we identify the substituents and number them in such a way that they have the lowest numbers. The compounds shown have the following names according to the order in which the structures appear in the image attached;
1. 2-methyl propane
2. 2,4-dimethyl heptane
3. 2,2,3,3-tetramethyl butane
4. 5-ethyl-2,4-dimethyl octane