A clean machine is a clean machine :-)
Answer:
k = 4.21 * 10⁻³(L/(mol.s))
Explanation:
We know that
k = Ae
------------------- euqation (1)
K= rate constant;
A = frequency factor = 4.36 10^11 M⁻¹s⁻¹;
E = activation energy = 93.1kJ/mol;
R= ideal gas constant = 8.314 J/mol.K;
T= temperature = 332 K;
Put values in equation 1.
k = 4.36*10¹¹(M⁻¹s⁻¹)e![^{[(-93.1*10^3)(J/mol)]/[(8.314)(J/mol.K)(332K)}](https://tex.z-dn.net/?f=%5E%7B%5B%28-93.1%2A10%5E3%29%28J%2Fmol%29%5D%2F%5B%288.314%29%28J%2Fmol.K%29%28332K%29%7D)
k = 4.2154 * 10⁻³(M⁻¹s⁻¹)
here M =mol/L
k = 4.21 * 10⁻³((mol/L)⁻¹s⁻¹)
or
k = 4.21 * 10⁻³((L/mol)s⁻¹)
or
k = 4.21 * 10⁻³(L/(mol.s))
I would love to answer but unfortunately there is no picture.
Answer:
Option D
All the above
Explanation:
Depending with the number of occupants in a building, the number of air conditioners required can either be increased or reduced. For instance, if the building is to be a classroom of over 50 students, 1 air-conditioner can't serve effectively. Similarly, the activity of occupants also dictate the amount of air conditioners required since if it's a gym room where occupants exercise often then the air conditioners required is different from if the room was to serve as a lounge. The appliances that also operate in a room require that air conditioners be installed as per the heat that may be generated by the appliances.