Answer:
Option B - 360 J
Explanation:
One of the formulas used to find out how much work was done is :
E = 0.5×m×v² (where m is the mass and v is the velocity)
Now we substitute values from the question and simplify :
E = 0.5×500×1.2²
E = 250×1.2²
E = 250×1.44
E = 360 J
So our answer is Option B
Hope this helped and have a good day
KE=1/2mv^2 - equation for kinetic energy
KE=(1/2)(0.12 kg)((7.8 m/s)^2 - plug it into the formula
KE=(0.06 kg)(60.84 m/s) - multiply 1/2 to the mass and square the speed
KE= 3.7 J - answer
Hope this helps
Answer:
Approximately
(given that the magnitude of this charge is
.)
Explanation:
If a charge of magnitude
is placed in an electric field of magnitude
, the magnitude of the electrostatic force on that charge would be
.
The magnitude of this charge is
. Apply the unit conversion
:
.
An electric field of magnitude
would exert on this charge a force with a magnitude of:
.
Note that the electric charge in this question is negative. Hence, electrostatic force on this charge would be opposite in direction to the the electric field. Since the electric field points due south, the electrostatic force on this charge would point due north.
Answer:
C number is write i think