<h3>
Answer:</h3>
3.01 × 10²⁵ molecules H₂O
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
50.0 mol H₂O
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
<u />
= 3.011 × 10²⁵ molecules H₂O
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
3.011 × 10²⁵ molecules H₂O ≈ 3.01 × 10²⁵ molecules H₂O
They are gases at room temperature
Hope this helps:)
Answer:
1120 L.
Explanation:
Hello!
In this case, as no conditions of pressure of temperature are given for this problem, we can assume that the scuba diver dives at STP (1 atm and 273.15 K), which means that 1 mole of air would occupy a volume of 22.4 L.
In such a way, since she needs 50.0 moles of air, the following ratio is useful to compute the size (volume) of the tank she needs:

Thereby, we plug in to obtain:

Best regards!