♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
The force of friction is equal to the product of the vertical force applied by the surface to the object in the coefficient of friction.
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
In this question ,
surface vertical force = Weight of the object
Thus ;
svf = ( mass ) × ( gravity acceleration )
_________________________________
If gravity acceleration is 10 :
svf = 10 × 10 = 100 N
So ;
frictional force = 100 × 0.20
frictional force = 20 N
##############################
If gravity acceleration is 9.8 :
svf = 10 × 9.8 = 98 N
So ;
frictional force = 98 × 0.20
frictional force = 19.6 N
_________________________________
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
Answer:
Explanation:
Given that,
Current in loops are
i1 = 12A
i2 = 20A
The loops are 3.4cm apart
The magnetic field at the center is found to be zero, so when want to find the radius of bigger loop
Magnetic Field is given as
B= μoi/2πr
Where,
μo is a constant = 4π×10^-7 Tm/A
r is the distance between the two wires
i is the current in the wires
B is the magnetic field
NOTE
Field due to large loop should be equal to the smaller loop.
B1 = B2
μo•i1 / 2π•r1 = μo•i2 / 2π•r2
Then, μo, 2π cancels out, so we have
i1 / r1 = i2 / r2
Make r2 subject of formula
i1•r2 = i2•r1
r2 = i2•r1 / i2
r2 = 20×3.4/12
r2 = 5.67cm
The radius of the bigger loop is 5.67cm.
When sediment has built up over time layers of rock start to form, starting with sedimentry rocks, then metamorphic rocks
Answer:
a. 12 m/s² down
Explanation:
Acceleration has units of length per time squared. Acceleration is a vector, so it also has a direction.
(a) The required magnitude of the electric field when the point charge is an electron is 5.57 x 10⁻¹¹ N/C.
(b) The required magnitude of the electric field when the point charge is an proton is 1.02 x 10⁻⁷ N/C.
<h3>
Magnitude of electric field </h3>
The magnitude of electric field is given by the following equation.
F = qE
But F = mg
mg = qE
E = mg/q
where;
- E is the electric field
- m is mass of the particle
- g is acceleration due to gravity
- q is charge of the particle
<h3>For an electron</h3>
E = (9.11 x 10⁻³¹ x 9.8)/(1.602 x 10⁻¹⁹)
E = 5.57 x 10⁻¹¹ N/C
<h3>For proton</h3>
E = (1.67 x 10⁻²⁷ x 9.8)/(1.602 x 10⁻¹⁹)
E = 1.02 x 10⁻⁷ N/C
Thus, the required vertical electric field is greater when the charge is proton.
Learn more about electric field here: brainly.com/question/14372859
#SPJ1