1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rusak2 [61]
3 years ago
6

Which song form has alternating repetitions of a main theme which two or more contrasting sections?

Physics
2 answers:
dlinn [17]3 years ago
5 0

Your answer would be A, Rando. (I did the quiz on K12 and thats what it said) hope it helps.

scoundrel [369]3 years ago
3 0
The answer to this item is rondo, letter A. As already mentioned in the above's definition, this has a recurring or repetitive lead them two contrasting sections. The contrasting sections are more commonly referred to as "episodes" and occasionally as "digressions" or "couplets". 
You might be interested in
Change in v= 9.8 m/s2xt. The diagram shows a ball falling toward Earth in<br> a vacuum.
Tresset [83]

Answer:

Option A. 39.2 m/s

Explanation:

From the question given above, the following data were obtained:

Initial velocity (u) = 0 m/s

Acceleration due to gravity (g) = 9.8 m/s²

Time (t) = 4 s

Final velocity (v) =?

v = u + gt

Since the initial velocity (u) is 0, the above equation becomes:

v = gt

Thus, inputting the value of g and t, we can obtain the value of v as shown below:

v = 9.8 × 4

v = 39.2 m/s

Therefore, the velocity of the ball at 4 s is 39.2 m/s.

5 0
3 years ago
Read 2 more answers
The name of the Sl unit for force is the ___?<br><br> A. Joule<br> B. Newton<br> C.Watt
tiny-mole [99]

Answer:

the name of the SI unit for force is the newton

8 0
2 years ago
Read 2 more answers
An 800-g block of ice at 0.00°C is resting in a large bath of water at 0.00°C insulated from the environment. After an entropy c
Allisa [31]

Answer:

Unmeltedd ice = 308.109 g

Explanation:

Gibbs Free energy:

A systems Gibbs Free Energy is defined as the free energy of the product of the absolute temperature and the entropy change less than the enthalpy change.

Therefore, G = ΔH-TΔS

where G is Gibbs Free Energy

          ΔH is enthalpy change

          T is absolute temperature

          ΔS is entropy change

Here since there is a phase change, therefore G will be 0.

∴ΔH = TΔS

Given: Temperature, T = 0°C = 273 K

           Entropy change,ΔS = 600 J/K

           Latent heat of fusion of water = 333 J/g

∴ΔH = TΔS

  ∴ΔH = 273 x 600

           = 163800 J

So this is the amount of enthalpy that will be used into melting of ice.

  ∴ΔH = mass of ice melted x latent heat of fusion of water

    Mass of ice melted = ΔH / latent heat of fusion of water

                                     = 163800 / 333

                                     = 491.891 g

This is the mass of ice melted.

And initial amount of ice is 800 g

Amount of ice left after melting = Initial amount of ice - amount of ice melted

                                                   = 800-491.891

                                                  = 308.109 g

Amount of ice remained after melting = 308.109 g

8 0
3 years ago
A life preserver is thrown from an helicopter straight down to a person in distress. The initial velocity of the life preserver
Leno4ka [110]

Answer:29.627 m

Explanation:

Given

Initial velocity of life preserver(u) is 1.6 m/s

it takes 2.3 s to reach the water

using equation of motion

v=u+at

v=1.6+9.81\times 2.3

v=24.163 m/s

Let s be the height of life preserver

v^2-u^2=2gs

24.163^2-1.6^2=2\times 9.81\times s

s=\frac{581.29}{2\times 9.81}

s=29.627 m

6 0
3 years ago
block with of mass m is at rest on horizontal frictionless surface at time t=0. A force given by F=Bt+C is applied horizontally
Alexeev081 [22]

Answer:

v_{2} =\frac{1}{2}

Explanation:

From the second law of Newton movement laws, we have:

F=m*a, and we know that a is the acceleration, which definition is:

a=\frac{dv}{dt}, so:

F=m*\frac{dv}{dt}\\\frac{dv}{dt}=\frac{F}{m}=\frac{\frac{1}{2}(t+1)}{4}=\frac{t+1}{8}

The next step is separate variables and integrate (the limits are at this way because at t=0 the block was at rest (v=0):

dv=\frac{1}{8}(t+1)dt\\\int\limits^{v_{2}}_0 \, dv=\int\limits^{2}_{0} {\frac{1}{8}(t+1)} \, dt

v_{2}=\frac{1}{8}*(\frac{t^{2}}{2}+t) (This is the indefinite integral), the definite one is:

v_{2}=\frac{1}{8}*(2+2)=\frac{1}{2}

3 0
3 years ago
Other questions:
  • Please help with 3 questions about acceleration
    6·1 answer
  • 15 POINTS!!! WILL MARK BRAINLIEST IF CORRECT!!
    13·2 answers
  • A car traveling in a straight line has a velocity of +4.4 m/s. after an acceleration of 0.65 m/s2 , the car's velocity is +8.3 m
    12·1 answer
  • An arrow is launched upward with an initial speed of 100 meters per second (m/s). The equations above describe the constant-acce
    9·1 answer
  • Which type of galaxy has arms that contain sites of active star formation and start close to a bulge in the center?
    13·2 answers
  • true/false: a single atom of an element in molecular and empirical formulas does not require a subscript
    9·1 answer
  • Select all of the answers that apply. Which of the following make the Earth unique when compared to the other planets in our sol
    14·1 answer
  • What is the magnitude of the resultant vector? Round your answer to the nearest tenth.
    7·2 answers
  • A bowler throws a ball down the lane toward the pins. The ball reaches the pins and slowly moves through them, knocking down the
    9·1 answer
  • Some jovian planets give off more energy than they receive because of
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!