There are two forces at play:
- The gravitational force acting downward due to the mass of the bucket and the water that it contains.
- The upward force that your hand exerts on the bucket.
If the magnitude of the force your hand exerts on the bucket equals the magnitude of the gravitational force, the bucket is in static equilibrium. That means the bucket is not moving and the forces acting on it balance each other out, making the net force 0.
Having 0 net force means the bucket doesn't undergo any acceleration, or change in motion.
Answer:

Explanation:
F = Force = 
m = Mass of proton = 
t = Time taken = 
Acceleration is given by


The velocity of the proton is 
Explanation:
It is given that,
When a high-energy proton or pion traveling near the speed of light collides with a nucleus, 
Speed of light, 
Let t is the time interval required for the strong interaction to occur. The speed is given by :




So, the time interval required for the strong interaction to occur is
. Hence, this is the required solution.
Answer:
My scenario would be A Car vs. a guard rail on a road. You have a car that is coming down a Highway at a speed of 43 Mph Miles per hour (69.2018 Kmh)
And it hits a steel guardrail and the car smashes in at the front and the guardrail is only bent while the car has the bumper and the hood along with the headlights and windshield along with the passenger side window break.
Explanation:
This is caused by so much force reacting from one object to another but also depends on molecular density.
Answer:
I think C
Explanation:
Since the bus is moving away from John.
{C - V}.