Matter.
A force of attraction that holds atom together
<span>When atoms react they form a chemical bond which is defined as a force of attraction that holds atom together. A force of attraction is defined as a kind of force that draws two or more objects together regardless of distance. There are two major categories of forces of attraction, one is intramolecular and intermolecular. Intramolecular forces is the presence of forces in atoms internally. While intermolecular is the force by which the force that is existent in two or more elements. </span>
Answer: To show the number of atoms present.
Explanation: As in CO² (Carbon dioxide), there is a small 2 next to the symbol "O" (oxygen) to explain that there are two oxygen atoms.
False because when a substance changes from one state of matter to another it is a physical change no matter how many states of matter it skips
<u>Answer:</u> The standard electrode potential of the cell is 4.53 V.
<u>Explanation:</u>
We are given:

The substance having highest positive
potential will always get reduced and will undergo reduction reaction. Here, fluorine will undergo reduction reaction will get reduced.
Aluminium will undergo oxidation reaction and will get oxidized.
Substance getting oxidized always act as anode and the one getting reduced always act as cathode.
To calculate the
of the reaction, we use the equation:


Hence, the standard electrode potential of the cell is 4.53 V.
Answer: 22g of chlorine would be needed to carry out this synthesis reaction
Explanation:
A synthesis reaction is one in which two or more than two elements combine together to forma single product.

The atoms present in the reactants are found on the product side. According to the law of conservation of mass, the number of atoms on both sides of the arrow must be same as the total mass must be conserved.
15 grams of sodium reacts with 22 grams of chlorine to yield 37 grams of sodium chloride. Thus 22g of chlorine would be needed to carry out this synthesis reaction.