Answer:
partial pressure of gas D Pd = 15.5 kPa
Explanation:
As per the Dalton's law of partial pressure, in a mixture, pressure exerted by each gas when summed gives the total partial pressure exerted by mixture.
P(Total) = P1+P2+P3.....
Given P(Total) = 35.7 kPa
Partial pressure of gas A Pa = 7.8 kPa
Partial pressure of gas B Pb = 3.7 kPa
Partial pressure of gas C Pc = 8.7 kPa
There, Partial pressure of gas D Pd = P(Total) -(Pa+Pb+Pc)
Pd = 35.7-(7.8+3.7+8.7) = 35.7-20.2 kPa = 15.5 kPa
Therefore, partial pressure of gas D Pd = 15.5 kPa
Answer:
2192.64 PSI.
Explanation:
- From the general law of ideal gases:
<em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the container in L (V = 1650 L).
n is the no. of moles of the gas in mol (n = 9750 mol).
R is the general gas constant (R = 0.082 L.atm/mol.K).
T is the temperature of the gas in (T = 35°C + 273 = 308 K).
∴ P = nRT/V = (9750 mol)(0.082 L.atm/mol.K)(308 K)/(1650 L) = 149.2 atm.
- <u><em>To convert from atm to PSI:</em></u>
1 atm = 14.696 PSI.
<em>∴ P = 149.2 atm x (14.696 PSI/1.0 atm) = 2192.64 PSI.</em>
Answer: this question is 3 days ago? Omg
Answer:
The heat would flow from the hot solid to the cool solid until all temperatures are near equal.