Answer:
(a) V = 0.75 m/s
(b) V = 0.125 m/s
Explanation:
The speed of the flow of the river can be given by following formula:
V = Q/A
V = Q/w d
where,
V = Speed of Flow of River
Q = Volume Flow Rate of River
w = width of river
d = depth of river
A = Area of Cross-Section of River = w d
(a)
Here,
Q = (300,000 L/s)(0.001 m³/1 L) = 300 m³/s
w = 20 m
d = 20 m
Therefore,
V = (300 m³/s)/(20 m)(20 m)
<u>V = 0.75 m/s</u>
<u></u>
(b)
Here,
Q = (300,000 L/s)(0.001 m³/1 L) = 300 m³/s
w = 60 m
d = 40 m
Therefore,
V = (300 m³/s)/(60 m)(40 m)
<u>V = 0.125 m/s</u>
The mass is 222g. No, it is less than 1kg. There are 1000 grams in a kilogram so it would be 0.222kg. Hope this Helps :D
<span>553 ohms
The Capacitive reactance of a capacitor is dependent upon the frequency. The lower the frequency, the higher the reactance, the higher the frequency, the lower the reactance. The equation is
Xc = 1/(2*pi*f*C)
where
Xc = Reactance in ohms
pi = 3.1415926535.....
f = frequency in hertz.
C = capacitance in farads.
I'm assuming that the voltage and resistor mentioned in the question are for later parts that are not mentioned in this question. Reason is that they have no effect on the reactance, but would have an effect if a question about current draw is made in a later part. With that said, let's calculate the reactance.
The 120 rad/s frequency is better known as 60 Hz.
Substitute known values into the formula.
Xc = 1/(2*pi* 60 * 0.00000480)
Xc = 1/0.001809557
Xc = 552.6213302
Rounding to 3 significant figures gives 553 ohms.</span>
Electroreception is limited to aquatic environments because on here is the resistivity of the medium is low enough for electric currents to be generated as the result of electric fields of biological origin. In air, the resistivity of the environment is so high that electric fields from biological sources do not generate a significant electric current. Electroreceptor are found in a number of species of fish, and in at least one species of mammal, the Duck-Billed platypus.