1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vadim26 [7]
3 years ago
11

An ECG has a scalar magnitude of 1 mV on lead II and a scalar magnitude of 0.5 mV on lead III. Calculate the scalar magnitude on

lead I.
Engineering
1 answer:
s2008m [1.1K]3 years ago
3 0

Answer: the scalar magnitude on lead I is 0.5 mV

Explanation:

Given that;

scalar magnitude on lead II = 1 mV

scalar magnitude on lead III = 0.5 mV

the scalar magnitude on lead I = ?

we know that;

Lead I Voltage = LA - RA -----------let this be equation 1

where LA is left arm electrode and RA is right am electrode

Also

Lead II = LL - RA

where LL is the left leg of electrode

we substitute

1 mV = LL - RA ---------------------let this be equation 2

Again

Lead III = LL - LA

we substitute

0.5 mV = LL - LA ------------------let this be equation 3

now subtract equation 3 and 2

1 mV - 0.5 mv = LL - RA - (LL - LA)

0.5 mV = LL - RA - LL + LA

0.5 mV = -RA + LA

0.5 mV = LA - RA

now taking a look at our equation 1 ( Lead I Voltage = LA - RA )

hence, Lead I Voltage = LA - RA = 0.5 mV

Therefore the scalar magnitude on lead I is 0.5 mV

You might be interested in
Using Von Karman momentum integral equation, find the boundary layer thickness, the displacement thickness, the momentum thickne
Alex_Xolod [135]

Answer:

Explanation:

We can solve Von Karman momentum integral equation as seen below using following in the attached file

3 0
3 years ago
B1) 20 pts. The thickness of each of the two sheets to be resistance spot welded is 3.5 mm. It is desired to form a weld nugget
kap26 [50]

Answer:

minimum current level required =  8975.95 amperes

Explanation:

Given data:

diameter = 5.5 mm

length = 5.0 mm

T = 0.3

unit melting energy = 9.5 j/mm^3

electrical resistance = 140 micro ohms

thickness of each of the two sheets = 3.5mm

Determine the minimum current level required

first we calculate the volume of the weld nugget

v = \frac{\pi }{4} * D^2 * l = \frac{\pi }{4} * 5.5^2 * 5 = 118.73 mm^3

next calculate the required melting energy

= volume of weld nugget * unit melting energy

= 118.73 * 9.5 = 1127.94 joules

next find the actual required electric energy

= required melting energy / efficiency

= 1127 .94 / ( 1/3 )  = 3383.84 J

TO DETERMINE THE CURRENT LEVEL REQUIRED  use the relation below

electrical energy =  I^2 * R * T

3383.84 / R*T = I^2

3383.84 / (( 140 * 10^-6 ) * 0.3 ) = I^2

therefore  8975.95 = I ( current )

4 0
3 years ago
Machine movement can be divided into what two main categories?
pishuonlain [190]

Answer:

motion and power

Explanation:

8 0
3 years ago
Read 2 more answers
A horizontal curve on a two-lane road is designed with a 2,300-ft radius, 12-ft lanes, and a 65-mph design speed. Determine the
Ierofanga [76]

Answer:

distance = 22.57 ft

superelevation rate = 2%

Explanation:

given data

radius = 2,300-ft

lanes width = 12-ft

no of lane = 2

design speed = 65-mph

solution

we get here sufficient sight distance SSD that is express as

SSD = 1.47 ut + \frac{u^2}{30(\frac{a}{g}\pm G)}     ..............1

here u is speed and t is reaction time i.e 2.5 second and a is here deceleration rate i.e 11.2 ft/s² and g is gravitational force i.e 32.2 ft/s² and G is gradient i.e 0 here

so put here value and we get

SSD = 1.47 × 65 ×2.5  + \frac{65^2}{30(\frac{11.2}{32.2}\pm 0)}

solve it we get

SSD = 644 ft  

so here minimum distance clear from the inside edge of the inside lane is

Ms = Rv ( 1  - cos (\frac{28.65 SSD}{Rv}) )        .....................2

here Rv is = R - one lane width

Rv = 2300 - 6 = 2294 ft

put value in equation 2 we get

Ms = 2294 ( 1  - cos (\frac{28.65 \times 664}{2294})  )  

solve it we get

Ms = 22.57 ft

and

superelevation rate for the curve will be here as

R  = \frac{u^2}{15(e+f)}  ..................3

here f is coefficient of friction that is 0.10

put here value and we get e

2300 = \frac{65^2}{15(e+0.10)}

solve it we get

e = 2%

3 0
3 years ago
cThe Mars Rover Spirit got stuck in the Martian sand. The wheels kept slipping. Attempts to free it were futile. Discuss the typ
IgorC [24]

Answer:

Improved/ advanced types of Actuators include servo systems, create a large range of actuator motion in response to the changing needs of the operational environment or process.

Actuators are local or automated suppliers of working motion.

Hydraulic and air cylinders can be classified as single-acting cylinders, meaning that the energy source result in movement in one direction and a spring is used for the other direction.

Explanation:

An actuator control system is referred to as any electronic, electrical, or electromechanical system often used to activate an actuator, control the direction as well as extent and duration of its output. Actuator control systems could take the form of extremely simple, manually-operated, start-and-stop stations, either sophisticated or programmable computer systems. The more improved/ advanced types include servo systems that produce a large range of actuator motion in response to the changing needs of the operational environment or process. This type of actuator control system uses an interface arrangement that assimilates feedback from the process or mechanism and adjusts the actuator in the right way. Most actuator systems will include at least a set of travel limits that prevent the actuator destroying itself or the secondary mechanism.

Actuators are local or automated suppliers of working motion. They are used to changes, adjust, or move a secondary mechanism, where a physical operator cannot intervene directly. They are denoted by a large range of varying types using electrical and electromagnetic, hydraulic, or pneumatic power sources to create linear or rotary outputs. One element they all have in common is the actuator control system used to start, stop, and adjust the range, speed, and duration of the working motion.

Actuators can produce a linear motion, rotary motion or oscillatory motion which means they can create motion in one direction, in a circular motion or in opposite directions at regular intervals. Hydraulic and air cylinders can be classified as single-acting cylinders, meaning that the energy source result in movement in one direction and a spring is used for the other direction.

7 0
3 years ago
Other questions:
  • An atomic force that can attract or repel ferrous substances is<br> known as:
    14·1 answer
  • A model of a submarine, 1:15 scale, is to be tested at 180 ft/s in a wind tunnel with standard sea-level air, while theprototype
    8·1 answer
  • Air enters a well-insulated turbine operating at steady, state with negligible velocity at 4 MPa, 300°C. The air expands to an e
    10·1 answer
  • Explain why the scenario below fails to illustrate an understanding of the importance of metrology. Situation: Natalie is a cali
    6·1 answer
  • What is Euler's equation?
    6·1 answer
  • A vernier caliper will measure in what ( URGENT)
    10·1 answer
  • The specific gravity of a fluid with a weight density of 31.2 lb/ft is a. 2.00 b. 0.969 c. 0.500 d. 1.03
    10·1 answer
  • What is the following diagram called?
    15·1 answer
  • How can you contribute to achieved the mission of NSTP during pandemic in your society?
    7·1 answer
  • Which step in the engineering design process does not come before building a<br> prototype?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!