Answer:
The final charges of each sphere are: q_A = 3/8 Q
, q_B = 3/8 Q
, q_C = 3/4 Q
Explanation:
This problem asks for the final charge of each sphere, for this we must use that the charge is distributed evenly over a metal surface.
Let's start Sphere A makes contact with sphere B, whereby each one ends with half of the initial charge, at this point
q_A = Q / 2
q_B = Q / 2
Now sphere A touches sphere C, ending with half the charge
q_A = ½ (Q / 2) = ¼ Q
q_B = ¼ Q
Now the sphere A that has Q / 4 of the initial charge is put in contact with the sphere B that has Q / 2 of the initial charge, the total charge is the sum of the charge
q = Q / 4 + Q / 2 = ¾ Q
This is the charge distributed between the two spheres, sphere A is 3/8 Q and sphere B is 3/8 Q
q_A = 3/8 Q
q_B = 3/8 Q
The final charges of each sphere are:
q_A = 3/8 Q
q_B = 3/8 Q
q_C = 3/4 Q
Answer:
The tangential speed of the ball is 11.213 m/s
Explanation:
The radius is equal:
(ball rotates in a circle)
If the system is in equilibrium, the tension is:

Replacing:

Replacing:

Answer:
a) 107.1875 Hz
b) 214.375 Hz
c) 321.5625 Hz
Explanation:
L = length of the open organ pipe = 1.6 m
v = speed of sound = 343 m/s
f = fundamental frequency
fundamental frequency is given as

inserting the values


Hz
b)
first overtone is given as
f' = 2f
f' = 2 (107.1875)
f' = 214.375 Hz
c)
first overtone is given as
f'' = 3f
f'' = 3 (107.1875)
f'' = 321.5625 Hz