The reaction between KOH and HBr is as follows ;
KOH + HBr ---> H₂O + KBr
Stoichiometry of base to acid is 1:1 molar ratio
Both are strong acid and strong base therefore complete ionization takes place
The number of KOH moles added - 0.50 M / 1000 mL/L x 22 mL = 0.011 mol
the number of HBr moles - 0.25 M /1000 mL/L x 44 mL = 0.011 mol
the number of H⁺ ions and OH⁻ ions are equal therefore the whole amount of acid has been completely neutralised by base.
No remaining acid nor base, therefore solution is neutral.
pH = 7
thats the pH value for a neutral solution
Explanation:
Below is an attachment containing the solution.
Answer:
As potassium is larger than sodium, potassium's valence electron is at a greater distance from the attractive nucleus and is so removed more easily than sodium's valence electron. As it is removed more easily, it requires less energy, and can be said to be more reactive.
Explanation:
<em>Hope you're having a splendiferous day</em><em>.</em>
<em>Just a bored kid willing to help...</em>
Answer:

Explanation:
Hello there!
In this case, according to the following chemical reaction we found on goo gle as it was not given:

Whereas we can see a 2:4 mole ratio of potassium permanganate product to potassium hydroxide reactant with molar masses of 158.03 g/mol and 54.11 g/mol respectively. In such a way, by developing the following stoichiometric setup, we obtain the mass of KOH to start with:

Best regards!