Answer:

Explanation:
The given function is

Now h = the height from the surface of the Earth
Here the building is 458 m tall


So,

Answer:
1.5106 cm
Explanation:
The beat frequency is equal to the absolute value of the difference between the frequencies of the two signals:

using the wave equation, we can re-write each frequency as

where c is the speed of light and
is the wavelength. Therefore,

where:
is the beat frequency
is the wavelength of the first generator
is the wavelength of the second generator
We also know that the second generator emits the longer wavelength, so we already know that the term inside the module is positive. Therefore, we can now solve for
:

Answer:
630.75 j
Explanation:
from the question we have the following
total mass (m) = 54.5 kg
initial speed (Vi) = 1.4 m/s
final speed (Vf) = 6.6 m/s
frictional force (FF) = 41 N
height of slope (h) = 2.1 m
length of slope (d) = 12.4 m
acceleration due to gravity (g) = 9.8 m/s^2
work done (wd) = ?
- we can calculate the work done by the boy in pushing the chair using the law of law of conservation of energy
wd + mgh = (0.5 mVf^2) - (0.5 mVi^2) + (FF x d)
wd = (0.5 mVf^2) - (0.5 mVi^2) + (FF x d) - (mgh)
where wd = work done
m = mass
h = height
g = acceleration due to gravity
FF = frictional force
d = distance
Vf and Vi = final and initial velocity
wd = (0.5 x 54.5 x 6.9^2) - (0.5 x 54.5 x 1.4^2) + (41 x 12.4) - (54.5 X 9.8 X 2.1)
wd = 630.75 j
<h2>
Energy used by heater is 8.21 x 10⁶ J</h2>
Explanation:
Energy = Power x Time
Power = Voltage x Current
Voltage = 120 V
Current = 9.5 A
Power = Voltage x Current
Power = 120 x 9.5 = 1140 W
Time = 2 hours = 2 x 60 x 60 = 7200 s
Energy = Power x Time
Energy = 1140 x 7200
Energy = 8208000 J
Energy used by heater is 8.21 x 10⁶ J
It is the acceleration of an object in free fall
Explanation:
When an object is in free fall, it is subjected only to one force: the force of gravity, which pulls the object downward, with a magnitude (near the Earth's surface) which is given by

where
m is the mass of the object
is the acceleration due to gravity
We can apply Newton's second law to the object in free fall:

where
F is the net force on the object
a is the acceleration of the object
m is the mass
However, since there is only the force of gravity acting on the object, the net force is equal to the force of gravity: so we can equate the two equations, obtaining that

Which means that the acceleration of an object in free fall (acted upon the force of gravity only) is equal to the acceleration due to gravity,
.
Learn more about gravity:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly