A)
It is a launch oblique, therefore the initial velocity in the vertical direction is zero. Space Hourly Equation in vertical, we have:
Through Definition of Velocity, comes:

B)
Using the Velocity Hourly Equation in vertical direction, we have:
The angle of impact is given by:

If you notice any mistake in my english, please let me know, because i am not native.
you can subtract the atomic number from the mass number to find the number of neutrons.
The voltage across an inductor ' L ' is
V = L · dI/dt .
I(t) = I(max) sin(ωt)
dI/dt = I(max) ω cos(ωt)
V = L · ω · I(max) cos(ωt)
L = 1.34 x 10⁻² H
ω = 2π · 60 = 377 /sec
I(max) = 4.80 A
V = L · ω · I(max) cos(ωt)
V = (1.34 x 10⁻² H) · (377 / sec) · (4.8 A) · cos(377 t)
<em>V = 24.25 cos(377 t)</em>
V is an AC voltage with peak value of 24.25 volts and frequency = 60 Hz.
Answer:
hence option A is correct
Explanation:
heat required from -9°C to 0°C ice = mass × specific heat of ice ×change in temperature
heat required from -9°C to 0°C ice = 7×2100×9 =132300 J =0.1323 MJ
( HERE SPECIFIC HEAT OF ICE IS A CONSTANT VALUE OF 2100
J/(kg °C )
heat required from 0°C ice to 0°C water = mass× specific heat of fusion of ice
= 7×3.36×10^5
= 2.352 × 10^6 J
= 2.352 MJ
TOTAL HEAT ENERGY REQUIRED = 0.1323 MJ +2.352 MJ
= 2.4843 MJ
hence option A is correct