1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KATRIN_1 [288]
3 years ago
9

1: A baseball is hit 4 feet above the ground leaves the bat with an initial speed of 98 ft/sec at an angle of 0 45 is caught by

an outfielder at a height of 3 feet.
Engineering
1 answer:
zvonat [6]3 years ago
5 0

Answer:

299.36 feet

Explanation:

To \ find  \   the  \ distance \  of  \ the  \ ball \  from  \ the \ home  \ plate.  \\ \\ From  \ the  \ given  \ information:

Height \ h = 4 \ ft

Initial \ speed \ V_o = 98 \ ft/s ec

The  \ angle \  \theta = 45^0

Acceleration \ due \ to \ gravity (g)= 32.2 \ ft/s

U_x = V_o \ cos 45 = \dfrac{98}{\sqrt{2}}

U_y = V_o \ sin 45 = \dfrac{98}{\sqrt{2}}

So;

S_y = u_y t - \dfrac{1}{2}gt^2

-1 =\dfrac{98}{\sqrt{2}}t - \dfrac{1}{2}*32*1.85t^2

By solving:

t_1 = 4.32 \ sec

Thus;

horizontal \ distance = U_x t

= \dfrac{98}{\sqrt{2}}\times 4.32

\mathbf{=299.36  \ feet}

\mathbf{Thus \ , the  \  distance \ from \  the  \ home  \ plate \  =  \ 299.36  \ feet}

You might be interested in
You have a motor such that if you give it 12 Volt, it will eventually reach a steady state speed of 200 rad/s. If it starts from
Aleksandr [31]

Answer:

a) \frac{Ws}{Es}  = \frac{200}{1+1.2s}

b) attached below

c) type zero system

d) k > \frac{g}{200}

e) The gain K increases above % error as the  steady state speed increases

Explanation:

Given data:

Motor voltage  = 12 v

steady state speed = 200 rad/s

time taken to reach 63.2% = 1.2 seconds

<u>a) The transfer function of the motor from voltage to speed</u>

let ; \frac{K1}{1+St} be the transfer function of a motor

when i/p = 12v then steady state speed ( k1 ) = 200 rad/s , St ( time constant ) = 1.2 sec

hence the transfer function of the motor from voltage to speed

= \frac{Ws}{Es}  = \frac{200}{1+1.2s}

<u>b) draw the block diagram of the system with plant controller and the feedback path </u>

attached below is the remaining part of the detailed solution

c) The system is a type-zero system because the pole at the origin is zero

d) ) k > \frac{g}{200}

7 0
3 years ago
Which of the following elements of the CIA triad refers to maintaining and assuring the accuracy of data over its life-cycle?
kenny6666 [7]

Answer:

Integrity: involves maintaining and assuring the accuracy of data over its life-cycle

Explanation:

Confidentiality: This is a CIA triad designed to prevent sensitive information from reaching the wrong people, while making sure that the right people have access to it.

Integrity: This is a CIA triad that involves maintaining the consistency, accuracy, and trustworthiness of data over its entire life cycle.

Availability: This is a CIA triad that involves hardware repairs and maintaining a correctly functioning operating system environment that is free of software conflicts.

Authentication:This is a security control that is used to protect the system with regard to the CIA properties.

4 0
3 years ago
A four-cylinder, four-stroke internal combustion engine has a bore of 3.7 in. and a stroke of 3.4 in. The clearance volume is 16
Bad White [126]

Answer:

the net work per cycle \mathbf{W_{net} = 0.777593696}  Btu per cycle

the power developed by the engine, W = 88.0144746 hp

Explanation:

the information given includes;

diameter of the four-cylinder bore = 3.7 in

length of the stroke = 3.4 in

The clearance volume = 16% = 0.16

The cylindrical volume V_2 = 0.16 V_1

the crankshaft N rotates at a speed of  2400 RPM.

At the beginning of the compression , temperature T_1 = 60 F = 519.67 R    

and;

Otto cycle with a pressure =  14.5 lbf/in² = (14.5 × 144 ) lb/ft²

= 2088 lb/ft²

The maximum temperature in the cycle is 5200 R

From the given information; the change in volume is:

V_1-V_2 = \dfrac{\pi}{4}D^2L

V_1-0.16V_1= \dfrac{\pi}{4}(3.7)^2(3.4)

V_1-0.16V_1= 36.55714291

0.84 V_1 =36.55714291

V_1 =\dfrac{36.55714291}{0.84 }

V_1 =43.52040823 \ in^3 \\ \\  V_1 = 43.52 \ in^3

V_1 = 0.02518 \ ft^3

the mass in air ( lb) can be determined by using the formula:

m = \dfrac{P_1V_1}{RT}

where;

R = 53.3533 ft.lbf/lb.R°

m = \dfrac{2088 \ lb/ft^2 \times 0.02518 \ ft^3}{53.3533 \ ft .lbf/lb.^0R  \times 519 .67 ^0 R}

m = 0.0018962 lb

From the tables  of ideal gas properties at Temperature 519.67 R

v_{r1} =158.58

u_1 = 88.62 Btu/lb

At state of volume 2; the relative volume can be determined as:

v_{r2} = v_{r1}  \times \dfrac{V_2}{V_1}

v_{r2} = 158.58 \times 0.16

v_{r2} = 25.3728

The specific energy u_2 at v_{r2} = 25.3728 is 184.7 Btu/lb

From the tables of ideal gas properties at maximum Temperature T = 5200 R

v_{r3} = 0.1828

u_3 = 1098 \ Btu/lb

To determine the relative volume at state 4; we have:

v_{r4} = v_{r3} \times \dfrac{V_1}{V_2}

v_{r4} =0.1828 \times \dfrac{1}{0.16}

v_{r4} =1.1425

The specific energy u_4 at v_{r4} =1.1425 is 591.84 Btu/lb

Now; the net work per cycle can now be calculated as by using the following formula:

W_{net} = Heat  \ supplied - Heat  \ rejected

W_{net} = m(u_3-u_2)-m(u_4 - u_1)

W_{net} = m(u_3-u_2- u_4 + u_1)

W_{net} = m(1098-184.7- 591.84 + 88.62)

W_{net} = 0.0018962 \times (1098-184.7- 591.84 + 88.62)

W_{net} = 0.0018962 \times (410.08)

\mathbf{W_{net} = 0.777593696}  Btu per cycle

the power developed by the engine, in horsepower. can be calculated as follows;

In the  four-cylinder, four-stroke internal combustion engine; the power developed by the engine can be calculated by using the expression:

W = 4 \times N'  \times W_{net

where ;

N' = \dfrac{2400}{2}

N' = 1200 cycles/min

N' = 1200 cycles/60 seconds

N' = 20 cycles/sec

W = 4 × 20 cycles/sec ×  0.777593696

W = 62.20749568 Btu/s

W = 88.0144746 hp

8 0
3 years ago
Which material has the highest cp value?
Nataly [62]

Answer: B. Water

Explanation:

6 0
3 years ago
A 1 m3 rigid tank initially contains air whose density is 1.18kg/m3. The tank is connected to a high pressure supply line throug
Elanso [62]

To solve this problem it is necessary to apply the concepts related to density in relation to mass and volume for each of the states presented.

Density can be defined as

\rho = \frac{m}{V}

Where

m = Mass

V = Volume

For state one we know that

\rho_1 = \frac{m_1}{V}

m_1 = \rho_1 V

m_1 = 1.18*1

m_1 = 1.18Kg

For state two we have to

\rho_2 = \frac{m_2}{V}

m_2 = \rho_2 V

m_1 = 7.2*1

m_1 = 7.2Kg

Therefore the total change of mass would be

\Delta m = m_2-m_1

\Delta m = 7.2-1.18

\Delta m = 6.02Kg

Therefore the mass of air that has entered to the tank is 6.02Kg

5 0
3 years ago
Other questions:
  • An aircraft component is fabricated from an aluminum alloy that has a plane strain fracture toughness of 40 MPa . It has been de
    7·1 answer
  • A cylindrical specimen of some metal alloy having an elastic modulus of 124 GPa and an original cross-sectional diameter of 4.2
    13·1 answer
  • In 2009 an explosive eruption covered the island of Hunga Ha'apai in black volcanic ash. What type of succession is this?
    7·1 answer
  • Can someone please help me this is urgent!?
    12·2 answers
  • PLEASE HELP AND ANSWER MY OTHER QUESTIONS!,
    7·1 answer
  • HELP ME PLEASE RN
    8·1 answer
  • Anything you want to do in Hootsuite can be found in the ________, with the main workspace in the _________?
    15·1 answer
  • Leland wants to work in a Production career operating heavy machinery. Which type of education or training should Leland seek?
    9·2 answers
  • What is a radio wave made up of? Molecules? Electrons? Other?
    15·2 answers
  • Which type of line is represented by thin, short dashes?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!