1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stellarik [79]
3 years ago
15

A ____ is marked by two sets of double yellow lines, with each set having a broken line on the inside, and a solid line on the o

utside. white arrows appear in this lane as well.

Engineering
2 answers:
Vitek1552 [10]3 years ago
7 0

Answer:

  center left-turn lane

Explanation:

A <em>center left turn lane</em> will be marked as described. The arrows, if present, generally indicate that left turns are permitted from the lane with these markings.

__

If the double yellow lines are solid, they are considered to be a "barrier" and are not to be crossed.

choli [55]3 years ago
3 0

Answer:

 center left-turn lane

Explanation:

You might be interested in
For a fluid with a Prandtl Number of 1000.0, the hydrodynamic layer is thinner than the thermal boundary layers. a) True b) Fals
kvv77 [185]

Answer:

(b)False

Explanation:

Given:

 Prandtl number(Pr) =1000.

We know that   Pr=\dfrac{\nu }{\alpha }

  Where \nu is the molecular diffusivity of momentum

             \alpha is the molecular diffusivity of heat.

 Prandtl number(Pr) can also be defined as

    Pr=\left (\dfrac{\delta }{\delta _t}\right )^3

Where \delta is the hydrodynamic boundary layer thickness and \delta_t is the thermal boundary layer thickness.

So if Pr>1 then hydrodynamic boundary layer thickness will be greater than thermal boundary layer thickness.

In given question Pr>1 so  hydrodynamic boundary layer thickness will be greater than thermal boundary layer thickness.

So hydrodynamic layer will be thicker than the thermal boundary layer.

8 0
3 years ago
Tensile testing provides engineers with the ability to verify and establish material properties related to a specific material.
Sedbober [7]

Answer:

True

Explanation:

Tensile testing which is also referred to as tension testing is a process which materials are subjected to so as to know how well it can be stretched before it reaches breaking point. Hence, the statement in the question is true

7 0
2 years ago
Do you think for security reasons everything that happens on the internet should be analyzed by the public security services ?
givi [52]

Answer: yes

Explanation: People post bad things that i think should get taken down i was on an app the other day and people were posting bad things

8 0
3 years ago
While playing a game of catch on the quadrangle, you throw a ball at an initial velocity of 17.6 m/s (approximately 39.4 mi/hr),
MAXImum [283]

Answer:

a) The y-component of velocity just before the ball hits the ground is -14.860 meters per second.

b) The ball is in the air during approximately 2.890 seconds.

c) The horizontal distance covered by the ball is 32.695 meters.

d) The magnitude of the velocity of the ball just before it hits the ground is approximately 18.676 meters per second.

e) The angle of the total velocity of the ball just before it hits the ground is approximately 52.717º below the horizontal.

Explanation:

a) The ball experiments a parabolic motion, which is a combination of horizontal motion at constant velocity and vertical motion at constant acceleration. First, we calculate the time taken by the ball to hit the ground:

y = y_{o} + (v_{o}\cdot \sin \theta) \cdot t+\frac{1}{2}\cdot g\cdot t^{2} (1)

Where:

y_{o}, y - Initial and final vertical position, measured in meters.

v_{o} - Initial speed, measured in meters per second.

\theta - Launch angle, measured in sexagesimal degrees.

g - Gravitational acceleration, measured in meters per square second.

t - Time, measured in seconds.

If we know that y_{o} = 2\,m, y = 0\,m, v_{o} = 17.6\,\frac{m}{s}, \theta = 50^{\circ} and g = -9.807\,\frac{m}{s^{2}}, then the time taken by the ball is:

-4.904\cdot t^{2}+13.482\cdot t +2 = 0 (2)

This second order polynomial can be solved by Quadratic Formula:

t_{1} \approx 2.890\,s and t_{2} \approx -0.141\,s

Only the first root offers a solution that is physically reasonable. That is, t \approx 2.890\,s.

The vertical velocity of the ball is calculated by this expression:

v_{y} = v_{o}\cdot \sin \theta +g\cdot t (3)

Where:

v_{o,y}, v_{y} - Initial and final vertical velocity, measured in meters per second.

If we know that v_{o} = 17.6\,\frac{m}{s}, \theta = 50^{\circ}, g = -9.807\,\frac{m}{s^{2}} and t \approx 2.890\,s, then the final vertical velocity is:

v_{y} = -14.860\,\frac{m}{s}

The y-component of velocity just before the ball hits the ground is -14.860 meters per second.

b) From a) we understand that ball is in the air during approximately 2.890 seconds.

c) The horizontal distance covered by the ball (x) is determined by the following expression:

x = (v_{o}\cdot \cos \theta)\cdot t (4)

If we know that v_{o} = 17.6\,\frac{m}{s}, \theta = 50^{\circ} and t \approx 2.890\,s, then the distance covered by the ball is:

x = 32.695\,m

The horizontal distance covered by the ball is 32.695 meters.

d) The magnitude of the velocity of the ball just before hitting the ground (v), measured in meters per second, is determined by the following Pythagorean identity:

v = \sqrt{(v_{o}\cdot \cos \theta )^{2}+v_{y}^{2}} (5)

If we know that v_{o} = 17.6\,\frac{m}{s}, \theta = 50^{\circ} and v_{y} = -14.860\,\frac{m}{s}, then the magnitude of the velocity of the ball is:

v \approx 18.676\,\frac{m}{s}.

The magnitude of the velocity of the ball just before it hits the ground is approximately 18.676 meters per second.

e) The angle of the total velocity of the ball just before it hits the ground is defined by the following trigonometric relationship:

\tan \theta = \frac{v_{y}}{v_{o}\cdot \cos \theta_{o}}

If we know that v_{o} = 17.6\,\frac{m}{s}, \theta_{o} = 50^{\circ} and v_{y} = -14.860\,\frac{m}{s}, the angle of the total velocity of the ball just before hitting the ground is:

\theta \approx -52.717^{\circ}

The angle of the total velocity of the ball just before it hits the ground is approximately 52.717º below the horizontal.

3 0
2 years ago
Read 2 more answers
Ethane (component A - C2H6) and hydrogen (component B) are fed to a differential reactor where they react on the catalyst to for
Fofino [41]
HELP ILL GIVE MOST BRAINLY AND 50 POINTS
HURRY PLEASE component c it is a compound so it will break
4 0
2 years ago
Other questions:
  • A manufacturer makes two types of drinking straws: one with a square cross-sectional shape, and the other type the typical round
    9·1 answer
  • why is the thermal conductivity of super insolation order of magnitude lower than the thermal conductivity of ordinary insulatio
    13·1 answer
  • A device that helps increase field worker productivity by providing reliable location and time
    13·1 answer
  • Give two causes that can result in surface cracking on extruded products.
    11·1 answer
  • Air enters a 200 mm diameter adiabatic nozzle at 195 deg C, 500 kPa and 100 m/s. It exits at 85 kPa. If the exit diameter is 158
    11·1 answer
  • 4. Which of the following is the first thing you should do when attempting
    13·2 answers
  • This is hard please help me you will give brainlist
    5·2 answers
  • A machine used to shred cardboard boxes for composting has a first cost of $10,000, an AOC of $7000 per year, a 3-year life, and
    14·1 answer
  • Which type of smoke indicates excessive fuel being burned in the combustion chamber
    15·2 answers
  • What is valve overlap?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!